Facebook do Portal São Francisco Google+
+ circle
Home  Arquitetura Bioclimática  Voltar

Arquitetura Bioclimática

 

Estas reflexões não pretendem ser tema de teoria ou estrutura metodológica de trabalho, mas apenas idéias pessoais surgidas a partir do projeto de arquitetura entendido como a ferramenta intelectual e prática utilizada pelo arquiteto para mergulhar na realidade com o objetivo de intervir nela, modificando-a.

É, portanto, e sobretudo, da arquitetura que me interessa falar, já que entendo que o bioclimatismo é evidentemente para nós um problema arquitetônico, quero dizer, que quando se fala da arquitetura bioclimática não é de uma disciplina autônoma que se propõe verificar no campo da arquitetura, mas sim de um problema de arquitetura simplesmente, uma vez que toda boa arquitetura tem que ser, na minha opinião, bioclimática, para que seja boa e eficaz como tem sido sempre em toda a história.

No entanto, isto, que parece tão óbvio e que tem sido assim durante séculos de prática arquitetônica, durante a explosão do movimento moderno, não só foi colocada de lado, como, no âmbito mais profundo da estrutura intelectual do estilo internacional, se assentou uma idéia contrária, onde o progresso e o avanço técnico de nossa disciplina requeria reinventar um habitat novo para um homem novo. Não creio que nos umbrais do século XXI o resultado e o preço pago por isso em grande medida seja motivo para persistir nestas ingênuas proposições. Existem, obviamente, múltiplas e brilhantes exceções, como todos sabemos.

Porém, afortunadamente, o homem e a natureza onde habita, compartilham algumas leis e estruturas comuns que, na realidade, nos fazem ser a mesma coisa.

A arquitetura deve aproveitar as novas sensibilidades que nos trazem este final de século rumo aos problemas do homem e o seu meio, quer dizer, uma nova maneira de se perceber dentro da natureza. É a sensibilidade bioclimática, poderíamos assim dizer, o que mais nos interessa.

A arquitetura bioclimática deveria busca a reconciliação da forma, a matéria e a energia que, até agora, eram tratadas separadamente por técnicas diferentes.

Uma das técnicas mais exploradas foi aquela que tem relação com a obtenção das energias necessárias para melhorar as condições de vida dos homens. É, sem dúvida, no aproveitamento e desenvolvimento das técnicas para a obtenção da energia no uso doméstico onde se realizaram maiores pesquisas durante este século.

No entanto, o modelo da máquina como objetivo, criando suas próprias linguagens, alheias ao verdadeiro protagonista da mudança, ou seja, o homem, desproviu a este último os significados que o unem à estrutura bionatural a que pertence e a qual antes fazia referência.

Hoje estamos assistindo a uma nova sacralização da natureza, e isso nos obriga a redefinir estas novas relações e, sobretudo, encontrar as linguagens que melhor a expressem. Esta nova sensibilidade, por tanto, é, sem dúvida, uma das mais esperançosas novidades intelectuais no umbral do século XXI.

A ecologia, o meio-ambiente e o bioclimatismo, o culto ao corpo, tem a ver com a demanda desta nova sensibilidade.

Porém, devemos ter cuidado para não cometer os mesmos erros, ao separar, outra vez, a estrutura unitária e cósmica do homem em disciplinas autônomas. Gromsky tem razão ao afirmar que “não devem existir disciplinas, senão problemas a resolver”.

No passado, a obtenção e transformação das energias (carbono, petróleo, gás, etc.) foram mostradas publicamente com orgulho, como uma das bandeiras mais limpas do progresso técnico e das conquistas sociais do homem.

Hoje nos envergonhamos publicamente destas iconografias, fechamos e cercamos nossas fábricas, bloqueamos nossas indústrias, centrais, etc., escondendo-as, e, em nossa castigada e perplexa consciência, nos reconhecemos como cúmplices em maior ou menor grau, ao necessitar delas para manter nosso estado de bem-estar.

De que bem-estar estamos falando?

Hoje em dia, os museus, as igrejas, os centros culturais, as residências, continuam parecendo-se com avançadas refinarias, a caixas tecnológicas, etc., como fonte de inspiração maquinária.

Tudo, menos os espaços onde a mitologia natural do homem, o fazem reconciliar-se com as novas maneiras de sentir e necessitar o meio natural como parte integrante do mesmo.

A arquitetura e, se quisermos dizer, uma nova sensibilidade à vida (Bio) e às novas condições específicas do homem (clima) é um novo posicionamento que abre passagem em muitos foros de pensamento.

Para mim, como arquiteto, e diante deste empenho, da palavra “klima” me interessa a etimologia exata da antiga Grécia: inclinação, falava da inclinação do sol no horizonte de qualquer lugar, das condições específicas de um lugar.

É, sobretudo, a sugestão de uma nova reflexão geométrica, não euclídica, esta última na origem inspiradora do racionalismo moderno, e, portanto, de sua ênfase na formalização abstrata do lugar.

Devemos, por tanto, explorar novas formas e modos de explicar e conformar o espaço e, o que é mais importante, medir o seu tempo. Uma arquitetura que vá contra o tempo e o espaço como dimensões mensuráveis segundo os termos impostos pelo devastador mundo do mercado.

Devastador no sentido ruskiniano da palavra, como aquela reação à produção do trabalho em termos de rentabilidade e a necessária recuperação da devoção pelo mesmo, afastando-se de toda funcionalidade dentro do sistema produtivo.

Acredito não se tratar de substituir um painel para captação de energia natural por uma telha, nem tampouco de pintar uma parede de preto, para justificar nossa intervenção bioclimática, mas simplesmente criar um consciência, digamos, energética, ao desenhar, simultaneamente, a produção e o uso da energia como um problema de reflexão arquitetônica que permita ao usuário demandar e à indústria desenvolver desde o início, a necessidade de novas formas, que expressem a necessidade de reencontrar, de novo, esse equilíbrio perdido.

César Ruiz

Larrea Cangas

Fonte: www.soarquitetura.com.br

Arquitetura Bioclimática

Adequação do projeto de arquitetura ao meio ambiente natural

Nos enganamos quando pensamos que o futuro da arquitetura é feito de imagens de arranha-céus feitos de alumínio, ferro e muito vidro. A vanguarda da arquitetura, já em curso nas paisagens dos EUA e Europa, retoma os materiais naturais e benignos, se preocupa com estratégias para poupar água e luz, respeita a natureza e o entorno onde se insere e, sobretudo, promove o conforto sem esquecer a questão estética.

Estamos passando por um processo de transição na forma de viver e ver o mundo, em que o meio ambiente começa a fazer parte do cotidiano, não como um discurso de ambientalistas ou idealistas mas com reflexos no nosso dia-a-dia. A arquitetura se integra nesta busca por respostas adequadas a integração do ser humano no meio ambiente, com mudanças no processo de criação e execução dos espaços habitáveis e reflexos em toda a cadeia produtiva da indústria da construção.

Muitos arquitetos, engenheiros e pessoas ligadas à construção, estão incorporando esta nova forma de fazer arquitetura, baseados no conceito de arquitetura bioclimática. O conceito de arquitetura bioclimática é um pouco genérico e integra outras definições mais concretas, como por exemplo, a de arquitetura integrada, aquela que se adapta a seu ambiente físico, socio-econômico e cultural, utilizando materiais autóctones, técnicas e formas tradicionais, que favorecem a integração visual e reduzem o impacto ambiental.

A arquitetura bioclimática também é conhecida como a de alta eficiência energética, porque economiza e conserva a energia que capta, produz ou transforma no seu interior, reduzindo, portanto, o consumo energético e a suposta poluição ambiental. Em geral, é uma arquitetura pensada com o clima do lugar, o sol, o vento, a vegetação e a topografia, com um desenho que permite tirar proveito das condições naturais do lugar, estabelecendo condições adequadas de conforto físico e mental dentro do espaço físico em que se desenvolve.

Arquitetura Bioclimática
Foto da fachada nordeste da casa n°2 ["Estudo de estratégias bioclimáticas no clima de Florianópolis", Suely Ferraz de Andrade]

O Brasil é um país rico em recursos naturais e com uma importante luminosidade, mas num grande número de ambientes, existe a necessidade da luz acesa o dia inteiro, pela falta de aproveitamento da iluminação natural. Na nossa região, de clima temperado, as necessidades de iluminação, aquecimento no inverno e refrigeração no verão podem ser totalmente cobertas através de estratégias passivas de condicionamento, que devem ser incorporadas num projeto de arquitetura que conjugue a conceituação arquitetônica com o condicionamento natural da edificação.

Frente a nossa atual situação de consumo elétrico, e ao fato de que no Brasil ainda é a minoria da população a que tem condições econômicas de incorporar sistemas de calefação ou de ar condicionado, mais importante e eminente se torna a nossa posição como arquitetos, de adotar sistemas passivos e estratégias benignas, que proporcionem, sem dúvida, maior conforto ambiental com maior economia. Estes sistemas, aliados a correta eleição dos materiais, ao respeito a tradição construtiva revista sob a ótica das novas tecnologias, e a cultura regional, impulsionam ao aumento da qualidade de vida da população, e refletem a verdadeira vanguarda na arquitetura. No entanto, as cidades estão cheias de erros e despreocupações neste campo. É certo que o conhecimento das técnicas bioclimáticas são fundamentais para que o arquiteto crie a consciência sobre a importância e a responsabilidade que detém sobre estes fatores.

Celina Britto Correa

Fonte: www.vitruvius.com.br

Arquitetura Bioclimática

A arquitetura bioclimática, sobre a qual baseamos este trabalho, pode ser definida como a projecção e construção de um edifício tendo em conta a análise do contexto climático em que este se insere, promovendo consequentemente uma melhoria das condições de conforto e uma minimização do consumo energético.

Este tipo de arquitetura, é então um instrumento que permite manter a viabilidade de um “equilíbrio saudável” na construção, racionalizando tanto os recursos utilizados como os resíduos produzidos.

Visto nenhum dos autores deste relatório ter uma formação científica de base nas áreas visadas, não pretendemos de forma alguma contribuir para a evolução, ou mesmo análise de um ponto de vista técnico, das áreas abordadas, mas sim apresentar uma visão geral do panorama desta área em Portugal. Entendemos no entanto que a própria ausência de conhecimentos técnicos, conjugada com a multidisciplinaridade das licenciaturas dos autores (Engª Biológica, Informática e Mecânica) conduziria a uma análise mais neutra e mais livre desta temática.

Pretendemos esboçar um retrato do Universo da Arquitetura bioclimática com o intuito de perceber qual a sua dinâmica de inovação, que quanto a nós, se distingue em duas áreas.

Por um lado, este tipo de Arquitetura é um desafio à criatividade e ao engenho dos seus intervenientes, visto que a própria disciplina se centra na busca de soluções específicas para cada contexto e situação particular. Paralelamente, esta área tem tido uma explosão de interesse ao nível mundial, motivada por uma grande dinâmica de investigação. O desafio deste setor é precisamente que ainda há tanto por fazer, tanto por descobrir, tanto por inovar!

Por outro lado, a própria introdução em Portugal da temática da arquitetura bioclimática perspectiva-se como um fator de inovação, visto o panorama de construção existente ser bastante deficiente nesta vertente, demonstrado aliás pelo fato de só há cerca de três anos se ter formado um Núcleo do Ambiente na Ordem dos Arquitetos.

Efetivamente, muitos dos intervenientes nesta área assemelham-se a D. Quixotes lutando contra moinhos de vento, consubstanciados em mentalidades e atitudes interiorizadas ao longo de muitos e muitos anos, em que o fator riqueza se encontra habitualmente associado ao esbanjamento de recursos. Levantouse a questão de como este tipo de técnicas e tecnologias são abordadas no nosso país e que oportunidades lhes têm sido dadas.

Assim, procurámos apurar quais os benefícios deste tipo de construção que justificam o seu crescente interesse, bem como que tipo de técnicas ou tecnologias envolve. De seguida, tentámos caracterizar o panorama português, com o intuito de perceber brevemente qual o quadro legal ou incentivos que promovem este tipo de construção, quais as barreiras ou entraves com que se deparam os diversos intervenientes desta área e quais as medidas a tomar para que a situação em Portugal atinja o grau de “business as usual”.

Estas informações permitiram-nos realçar os tais dois níveis de inovação mais preponderantes: a inovação ao nível do produto, tão essencial nesta área, e a inovação organizacional, que só agora começa a aparecer, sobretudo em Portugal.

Concluímos que Portugal se encontra numa posição extremamente vantajosa em termos climatéricos para a prática da arquitetura bioclimática, mas efetivamente os intervenientes no setor deparam-se com três obstáculos de vulto: a falta de sensibilização da sociedade portuguesa para a temática da sustentabilidade, a falta de qualificação a todos os níveis da força de trabalho disponível e finalmente a ausência de verdadeira vontade política em promover mecanismos eficazes e consistentes de financiamento a novas tecnologias e processos de inovação nesta área. Estes três fatores compõem um ciclo vicioso de que é difícil sair sobretudo quando apenas se ataca um dos fatores de cada vez, como tem vindo a ser habitual. Apesar de tudo, alguns esforços têm sido feitos, sobretudo por impulso de programas comunitários e nacionais, tais como o E4, que apenas pecam por não terem tido um maior impacto social e por não conseguirem que muitas das medidas e recomendações propostas tenham saído do papel. No entanto, importa referir que os novos regulamentos, no que toca ao setor da construção (RCCTE e RCSCE), aguardam neste momento a sua aprovação, o que em conjunto com a aplicação do plano de certificação dos edifícios, será uma medida (verdadeiramente) impulsionadora desta área. Resta agora saber, para quando se deve esperar essa revolução!

Em resumo, uma política governamental consistente e duradoura, focada no combate aos três fatores referidos, constituiria um fator decisivo para o avanço da arquitetura ambiental. Não defendemos que seja o Estado o principal interveniente neste setor, pelo contrário, mas cabe-lhe o papel de formação, sensibilização e encorajamento dos seus cidadãos para que se gere uma consciência social que permita o desenvolvimento de Portugal. Ao intervir, o Estado estará a dar o primeiro passo para acabar com o ciclo vicioso referido acima, contribuindo para uma maior sustentabilidade e eficiência na exploração dos edifícios, e por consequência uma maior autonomia energética de Portugal e uma maior preservação ambiental.

Construção sustentável: uma introdução

“[...] Sustentabilidade significa sobrevivência, entendida como a perenidade dos empreendimentos humanos e do planeta [...] implica planejar e executar ações [...] levando em conta simultaneamente as dimensões econômica, ambiental e social.[...]” [28]

“The alltogetherness of everything” é uma ideia que exprime o paradigma da ecologia, no sentido em que tudo está relacionado com tudo o resto (Barry Commoner, 1917-, EUA, biólogo, ambientalista). Neste âmbito é importante perceber que o planeta Terra subsiste graças a um “saudável” equilíbrio entre todos os seus componentes num mecanismo a que se chamou o ciclo da vida e que está na origem de todos os ecossistemas.

Arquitetura Bioclimática
Ciclo da vida

Segundo a Organização das Nações Unidas (ONU), a população mundial será de 8,5 milhares de milhões de habitantes em 2025 e atingirá os 10,2 milhares de milhões em 2100 sendo que os maiores aumentos de população serão nos países menos favorecidos.

A par desta evolução demográfica, está também uma forte urbanização: bastião do desenvolvimento económico e social. Estes fatores exercem uma enorme pressão no meio ambiente visto esgotarem os recursos e aumentarem os resíduos o que provoca a sobrecarga do biociclo natural levando à inevitável poluição (cf. Figura 1). Este é infelizmente um dos problemas com que a humanidade se tem vindo a debater nas últimas décadas e é claro que é hoje muito mais relevante que há cerca de 10,000 anos em que a população não ultrapassava os 5 a 10 milhões de habitantes. Torna-se então premente conseguir que o ciclo natural na origem da vida seja preservado.

Desta forma têm sido seguidas duas estratégias: melhorar os passos limitantes do ciclo e economizar os recursos. A primeira estratégia envolve políticas de reciclagem, de tratamento de resíduos e eventualmente, num estado já de poluição severa, de remediação * .

A segunda estratégia, com especial ênfase neste trabalho, envolve o aumento da eficiência dos processos utilizados, de forma a que o consumo de recursos seja minimizado. Importa realçar que esta abordagem traz importantes benefícios económicos. Esta estratégia tem sido possível com o aperfeiçoamento tecnológico sendo exemplo disto as importantes reestruturações de que foi e tem sido alvo a indústria a partir dos anos 80, e que permitiu diminuir o consumo de energia, de um rácio de 40% do total consumido nos anos 80 na UE, para apenas 28% do total da energia consumida atualmente [18].

É também vital a sensibilização dos cidadãos para esta problemática, contribuindo com isso para desmistificar a ideia de que o bem estar estão relacionados com o esbanjamento de recursos.

Na área da construção, o fascínio pela técnica e a inconsciência da esgotabilidade dos recursos conduziram a que as boas práticas ancestrais fossem sendo esquecidas, talvez por se pensar que a tecnologia poderia resolver todos os problemas. Entrou-se então numa época em que grande parte dos princípios básicos de construção foram sendo substituídos por interesses económicos ou estéticos e onde foi necessário, para suplantar o desconforto causado, introduzir soluções tecnológicas tais como sistemas de iluminação e climatização artificiais.

Isto levou a que os consumos energéticos dos edifícios, sobretudo em energia eléctrica subissem em flecha, consumos totalmente desnecessários que poderiam ser diminuídos ou mesmo eliminados seguindo outras vias. Ora esta realidade só começou a ser um problema quando se começou a falar não só da escassez de combustíveis fósseis, mas também do aquecimento global, provocado em grande parte pela emissão de gases de estufa como o CO2. A emissões em massa deste gás, resultantes essencialmente da queima de combustíveis fósseis quer nas centrais termoeléctricas para produção de energia eléctrica, quer nos meios de transporte, são uma carga para o ciclo do carbono (Figura 2). Como consequência o CO2 acumula-se na atmosfera, contribuindo assim para a retenção da radiação solar na Terra e consequentemente para o seu aquecimento global.

Por este motivo, e desde que se tomou consciência deste problema, esforços têm sido feitos para diminuir este tipo de emissões, nomeadamente através do protocolo de Quioto, quer no setor dos transportes, quer no setor da energia, dois dos mais problemáticos.

Arquitetura Bioclimática
Esquema simplista do ciclo do carbono. Importa salientar que a velocidade da formação dos combustíveis fósseis, é claramente inferior à velocidade do seu consumo, sendo este aspecto responsável pela acumulação do CO2 (aqui, gás carbónico) na atmosfera. Ao se preconizar a utilização de biocombustíveis, como a biomassa ou o álcool, pretende-se aliviar esta sobrecarga utilizando combustíveis cuja velocidade de formação é mais próxima da velocidade do seu consumo [29].

50% dos recursos materiais retirados da natureza e 50% dos resíduos produzidos em cada país estão relacionados com o setor da construção. Em paralelo, cerca de 40% do consumo de energia na Europa está relacionado com os gastos em edifícios. Por estes motivos, e por existirem soluções que minimizam estes desperdícios, o setor da construção tem evoluído no sentido de adoptar e favorecer medidas que minimizem os seus gastos energéticos e os impactos ambientais no meio ambiente de forma a promover um urbanismo sustentável.

A sustentabilidade na construção passa por três medidas essenciais: em primeiro lugar, a melhoria dos projetos em termos de eficiência energética, diminuindo as suas necessidades em iluminação, ventilação e climatização artificiais, em segundo lugar, a substituição do consumo de energia convencional por energia renovável, não poluente e gratuita e finalmente, em terceiro lugar, a utilização de materiais locais, preferencialmente materiais de fontes renováveis ou com possibilidade de reutilização e que minimizem o impacto ambiental (extração, gastos de energia, consumo de água na sua extração, aspectos de saúde, emissões poluentes etc.). É também de notar, que a construção sustentável pode ainda adoptar outras medidas como sistemas de tratamento de resíduos orgânicos, sistemas de reaproveitamento de água e outros que não vão ser abordados neste trabalho.

A Arquitetura Bioclimática

O que é a Arquitetura Bioclimática?

A Arquitetura bioclimática consiste em pensar e projetar um edifício tendo em conta toda a envolvência climatérica e características ambientais do local em que se insere. Pretende-se assim optimizar o conforto ambiental no interior do edifício (i.e. o conforto térmico, luminoso, acústico, etc.) utilizando apenas o design e os elementos arquitetônicos disponíveis.

A grande inovação no contexto da Arquitetura Bioclimática resulta então, quanto a nós, de dois grandes fatores: da multidisciplinaridade necessária para conceber um projeto eficiente e da sua inserção no tema da sustentabilidade. Ambos estes fatores têm sido largamente desprezados na Arquitetura moderna visto por um lado existir de certa forma uma falta de diálogo entre a Arquitetura e a Engenharia e por outro lado existir ainda uma globalização dos critérios arquitetônicos criando um “modelo internacional” que em muitos casos está desenraizado do contexto. A Arquitetura Bioclimática permite integrar várias áreas do saber, criando modelos e projetos únicos para cada situação, podendo considerar, não só os aspectos climáticos como também aspectos ambientais, culturais e socioeconómicos.

Com as suas raízes no empirismo das regras de boa arte dos nossos antepassados, a arquitetura bioclimática surgiu numa altura em que a não existência de tecnologias que pudessem responder às necessidades de climatização e de iluminação obrigavam a uma construção eficiente e inserida no clima circundante. É ainda de notar que nessa altura os materiais utilizados eram os materiais locais, o que permitia uma diversificação e uma exploração limitada de cada tipo de material. Exemplos deste tipo de construção são visíveis em algumas casas no Alentejo, em que o fato de estas estarem todas em banda, com ruas estreitas, permitia um maior sombreamento e as paredes grossas pintadas de branco permitiam uma maior inércia térmica do edifício e uma menor absorção da radiação solar. Outro exemplo bastante conhecido são as casas existentes em países nórdicos com uma inclinação acentuada dos telhados, necessária para permitir que a neve não permaneça em cima deste. Ambos estes exemplos ilustram casos em que com medidas muito simples se promove o conforto tanto de Inverno como de Verão.

Percebe-se assim que um edifício bioclimático não tem que envolver despesas acrescidas visto não precisar de complicados dispositivos tecnológicos. Assim, o seu sucesso depende apenas da experiência, dos conhecimentos e da criatividade do seu projetista. No fundo, a Arquitetura Bioclimática é apenas um rótulo relativamente recente para classificar uma série de atitudes no processo de projeto.

A vantagem da existência da Arquitetura Bioclimática enquanto área do saber, é a progressiva sistematização e evolução dos objetivos a que se propõe: projetar, tendo em conta o aproveitamento energético potencial do local a que se destina.

Existem outras definições relacionadas com este tema, que trabalham no mesmo sentido e que importa distinguir aqui a título de informação:

Arquitetura solar passiva: É muito semelhante à Arquitetura Bioclimática com a única diferença de que apenas lida com os ganhos energéticos provenientes do Sol, enquanto que a Arquitetura Bioclimática pode incluir outras preocupações climatéricas.
Design ativo ou Arquitetura solar ativa:
Lida com meios mecânicos de baixo consumo energético, em geral associado ao uso de energias renováveis: ex. paineis solares, fotovoltaico, sistemas hibridos de arrefecimento por evaporação, etc.

Construção Sustentável

Lida com o impacto ambiental de todos os processos envolvidos na construção de uma casa desde os materiais utilizados até às técnicas de construção passando pelo consumo de energia no processo construtivo e no edifício durante o seu tempo de vida. Este tipo de arquitetura abarca o conceito de arquitetura bioclimática.

É difícil, no contexto deste trabalho, separar estes quatro conceitos e portanto, decidimos abordar a arquitetura bioclimática englobando também a utilização de sistemas ativos, leia-se mecânicos, a utilização de energias renováveis, e roçando ao de leve no conceito de arquitetura sustentável.

Como benefícios deste tipo de arquitetura, refere-se como fator chave a obtenção de condições de conforto ambiental com o mínimo consumo de energia possível, implicando que os custos de manutenção deste tipo de edifícios em iluminação, ventilação e climatização sejam extremamente baixos. Ao complementar estas medidas com medidas ativas de retenção de energia solar, como é o caso dos painéis solares para aquecimento de águas, dos painéis solares-fotovoltaicos para produção de energia eléctrica, ou até mesmo de outras medidas como a produção de eletricidade a partir de energia eólica, pode-se conseguir que o edifício seja (quase) auto-suficiente em termos energéticos e com um conforto associado igual ou até mesmo superior ao de um outro edifício convencional.

Como exemplo, podemos citar um dos edifícios vencedores do concurso “Edifício Energeticamente Eficiente 2003” promovido no âmbito do programa P3E: uma banda de três moradias em Janas, Sintra, cujo desempenho energético permite não haver necessidade de utilização nem de aquecimento nem de arrefecimento artificiais mantendo-se sempre uma temperatura entre os 20 e 25 ºC durante todo o ano. Isto utilizando apenas sistemas tão simples como uma boa ventilação e aproveitamento dos ganhos solares no Inverno.

Ao ler estes argumentos, qualquer pessoa de bom senso ficaria bem impressionada e se questionaria por que razão este tipo de técnicas não são mais aplicadas ou têm sido esquecidas. Uma das razões está relacionada com a velocidade da inovação não permitir o amadurecimento dos processos e produtos. Neste caso o tal fascínio pelas tecnologias e pelas novidades levaram a que a sociedade rapidamente substituísse técnicas antigas e apostasse em novos instrumentos sem haver ainda tempo para se concluir quais os seus reais efeitos. Um exemplo disto é claramente a utilização dos aparelhos de ar condicionado.

Por outro lado, antes existiam as regras de boa arte e os conhecimentos eram transmitidos de mestres para aprendizes, pelo que os implementadores sabiam à partida quais as melhores práticas a utilizar. Hoje em dia esta passagem de conhecimentos informais já praticamente não acontece, razão pela qual se sente no mercado a falta de mão-de-obra qualificada. Esta mão de obra experiente, ainda que tivesse a base dos seus conhecimentos no empirismo, contribuiria hoje para que as regras de boaarte persistissem e para que não fossem esquecidos princípios básicos de construção, não permitindo os erros que muitas vezes atualmente se cometem. Também na arquitetura, estes princípios foram esquecidos desde o início do século 20. Por essa razão, desde os anos 50 que este tipo de técnicas deixaram de ser parte integrante da formação de um arquiteto, tendo sido de novo retomadas apenas muito recentemente e ainda com algumas lacunas.

Outra questão importante a este respeito tem a ver com o enorme número de variáveis associadas a uma arquitetura bioclimática eficaz, como por exemplo, podemos aumentar a luminosidade de uma divisão com uma maior área de envidraçado, correndo o risco de aumentar exageradamente a temperatura ambiente em virtude de uma maior exposição solar interior. Claramente um ponto de encontro eficiente só pode ser conseguido, aparte uma formação adequada nas técnicas base, com a utilização de ferramentas de modelação e segundo uma perspectiva de experiência/intuição. Já existem muitas ferramentas que permitem atingir soluções de forma rápida e expedita, existindo no entanto alguma falta de conhecimento da sua existência e também porventura uma certa falta de interesse na sua utilização. Mais uma vez a formação tem aqui um papel preponderante, no sentido de se promover e divulgar a utilização de ferramentas que facilitam claramente o trabalho do arquiteto e do engenheiro.

Paralelamente a estes problemas há que admitir que hoje em dia a habitação também obedece a conceitos de moda e consequentemente, tal como uma senhora se sujeita a usar sapatos com um salto agulha de 15 cm só para parecer mais bonita, esquecendo os efeitos que esse capricho possa ter na sua saúde, também os donos de uma casa comprometem por vezes a “saúde” desta, em prol de uma casa com artifícios estéticos necessários ao seu “sucesso” , refletindo as posses económicas dos seus donos. Até porque a ideia que ainda vigora na nossa sociedade é de que a economia e a poupança estão associadas à pobreza. Quem tem dinheiro, pode comprar um potentíssimo sistema de ar condicionado!

Por fim, existe ainda um último aspecto que tem a ver com o fato de a abordagem bioclimática ou da utilização de energias renováveis ter tido a infelicidade nas últimas décadas de sofrer de um estigma de disfuncionalidade causado pela má instalação de certo tipo de aplicações, nomeadamente painéis solares, e pela dificuldade do utilizador encontrar apoio técnico competente e eficiente. Em muitas situações, toda a instalação foi mal dimensionada, mal instalada ou mesmo fraudulenta e o utilizador deparava-se com uma despesa enorme que não era rentabilizada, pelo contrário. Hoje em dia, a maior dificuldade com que as empresas nesta área se confrontam prende-se justamente com o cepticismo dos consumidores, pelo tal estigma que ainda rodeia estes conceitos, ou até por no passado se ter associado estas técnicas a fanatismos ecológicos.

Como se constrói “bioclimaticamente”?

“...innovation increasingly means the ability to cope with uncertainty in diversified environments...”, [8]

Um dos fatores chave para um design passivo eficaz e eficiente é a compreensão de que não existe uma solução óptima e aplicável a todas as situações, mas sim inúmeros mecanismos que devem ser seleccionados no sentido de se encontrar uma solução adequada para determinado local. Alguns dos fatores que podem afetar esta escolha são o fato de nos encontrarmos em cidade ou no campo, numa montanha ou numa planície, a quantidade de radiação solar recebida diariamente, etc.

Este trabalho não pretende de todo abordar o lado técnico destas questões, tornando-se no entanto essencial focar alguns conceitos fulcrais. Apresentase assim abaixo uma breve introdução sobre os conceitos de base, para de seguida expor algumas das possíveis técnicas e tecnologias utilizadas em Arquitetura Bioclimática.

Conceitos básicos

Energia Solar

A energia solar depende de dois fatores: a trajetória do Sol e a duração da exposição solar. Sendo o Sol a maior fonte de energia utilizada na arquitetura bioclimática, é muito importante ter uma ideia da sua trajetória e do número de horas de Sol recebidas ao longo do dia e do ano.

É a trajetória solar que define a duração da exposição solar, e o ângulo de incidência dos raios solares que determinam a intensidade da radiação.

No hemisfério Norte (acima do trópico de Câncer), só há dois dias por ano em que o eixo de rotação da Terra é perpendicular ao plano do seu movimento em torno do Sol: o equinócio da Primavera e o equinócio do Outono. Nestes dias, o tempo de dia é exatamente igual ao tempo de noite e o Sol nasce precisamente a Leste e põe-se a Oeste.

Arquitetura Bioclimática
Esquema ilustrativo da trajetória solar.
Sublinha-se a diferença de trajetória no Inverno e no
Verão o que explica a diferença de intensidade da radiação
e de tempo de exposição solar nas duas estações.

A energia solar recebida por qualquer superfície pode chegar de três modos distintos: ou por radiação direta, a forma de radiação mais intensa, ou por radiação difusa, que no fundo é a radiação que foi difundida em todas as direcções pelas moléculas de ar e por partículas que compõem a atmosfera, ou ainda por radiação refletida por outras superfícies. Num dia de céu limpo, a percentagem de radiação que chega ao solo é cerca de 50% da emitida pelo Sol, sendo a percentagem de radiação difusa baixa. No entanto, num dia com nuvens, a radiação difusa pode variar entre 10 a 100% da radiação que chega ao solo.

O ganho solar direto é a forma mais simples de se conseguir aproveitar de forma passiva a energia solar. Pode consistir somente numa habitação com janelas orientadas a Sul, que no Inverno conseguem um ganho solar considerável desta forma, e que no Verão, em virtude de uma posição mais elevada do Sol na sua trajetória, e eventualmente até de um sombreamento sobre a janela, impedem o sobreaquecimento da habitação.

Arquitetura Bioclimática
Esquema ilustrando a diferença do ângulo de incidência do sol consoante as estações do ano, o que permite um aproveitamento da energia solar diferenciado consoante a estação.

Temperatura

A temperatura depende essencialmente da radiação solar, do vento, da altitude e da natureza do solo. O Sol aquece a atmosfera indiretamente visto que o solo acumula a energia solar que recebe e reemite o calor por radiação e convecção. A propagação deste calor é então assegurada ou por condução, ou por difusão, através da turbulência do ar, ou seja através do vento. Durante o dia, como resultado de uma maior quantidade de radiação direta incidente, a temperatura tem tendência a subir, acontecendo o inverso à noite.

Para estudar o comportamento térmico de uma casa, torna-se então importante conhecer os modos de transmissão de calor.

Como acabámos de ver, o calor transmite-se essencialmente de três modos diferentes:

Condução: O calor propaga-se através de continuidades materiais. Cada material tem o seu coeficiente de condução de calor que indica se o material é bom condutor térmico, ou se por outro lado é um bom isolante.
Convecção:
O calor transfere-se de um meio sólido para um fluido que escoa sobre esse sólido. Se este escoamento/movimento tiver uma origem natural, devido a gradientes de temperatura (o ar frio é mais denso e desce, o quente é menos denso e sobe) a convecção chama-se natural. Se a convecção tiver origem em ventos, ou em ventoinhas diz-se que é forçada e é também mais eficiente.
Radiação:
Todos os corpos emitem radiação eletromagnética cuja intensidade depende da sua temperatura. Este modo não precisa de nenhum meio para se propagar e é o modo através do qual a energia solar alcança a terra.

Humidade

O ar é composto por uma mistura de ar seco e vapor de água. A humidade traduz qual a percentagem de água que o ar contém e o seu valor é influenciado não só pela temperatura do ar mas também pelo volume de precipitações, pela vegetação, pelo tipo de solo e pelas condições climatéricas tais como os ventos e a exposição solar. A humidade influencia a sensação de bem estar visto que uma das formas do corpo regular a temperatura do corpo passa pela evaporação.

Vento

O vento resulta da deslocação de uma massa de ar maioritariamente na horizontal, de uma zona de alta pressão (massa de ar fria) para uma zona de baixa pressão (zona de ar frio). Vários parâmetros afetam a sua existência e a sua velocidade que, em geral aumenta com a altitude sendo a topografia é um destes fatores. O vento é geralmente uma vantagem no Verão visto que permite arrefecer a atmosfera, mas é uma desvantagem no Inverno visto ser um dos fatores que contribui para o arrefecimento dos edifícios por convecção.

Água

Em pequena ou em larga escala as massas de água têm uma grande influência sobre o microclima de um local visto que regulam as flutuações de temperatura agindo como tampões térmicos.

De fato, a vaporização da água é um processo endotérmico, ou seja retira energia do meio ambiente. Essa energia chama-se energia de vaporização. Assim, quando a água evapora permite um certo arrefecimento da zona circundante. Foram já utilizados por diversas vezes dispositivos que ao pulverizarem um local permitem a diminuição da temperatura de alguns graus. Um exemplo disto são as fontes e jatos de água espalhados pelo recinto da Exposição Universal de Sevilha em 1992 ou os famosos “vulcões de água” da Expo 98 em Lisboa.

A vegetação

A vegetação em arquitetura bioclimática é muito útil visto proteger de forma sazonal os edifícios, refrescá-los através da evapo-transpiração e filtrar o pó em suspensão no ar. Todavia é preciso ter em atenção a escolha das plantas tendo em consideração os objetivos pretendidos ou seja escolher vegetação de folha caduca para sombrear no Verão mas não no Inverno.

Inércia térmica

Um corpo aquece quando a temperatura do meio que o envolve sobe. Se a temperatura sobe lentamente é dito que o corpo tem uma grande inércia térmica enquanto se a temperatura subir rapidamente diz-se que o corpo tem baixa inércia térmica.

Arquitetura Bioclimática
Conceito de atraso

Aí, mostra-se a variação da temperatura exterior e da temperatura interior de um edifício para duas situações diferentes: paredes em adobe, um material com grande inércia térmica, e paredes em metal, um material com pouca inércia térmica.

A inércia térmica depende então grandemente dos materiais utilizados na construção do edifício.

Um exemplo do tempo de atraso da passagem de energia em função da espessura de vários materiais é dado na Figura abaixo:

Arquitetura Bioclimática
Tempo de atraso de diversos materiais de construção em função da sua espessura e da quantidade de calor acumulado para espessuras típicas, em kJ/m²K (segundo E. Gratia)

Este conceito é muito importante em casas bioclimáticas. Se elas tiverem uma baixa inércia térmica vão reagir rapidamente à radiação solar aquecendo rapidamente durante o dia mas também arrefecendo rapidamente à noite. Por outro lado, casas com grande inércia térmica vão-se manter mais tempo frescas durante o dia, enquanto armazenam calor, que vão libertar lentamente à noite.

Deste modo há então dois conceitos que importa referir: atraso (da temperatura interior em relação à temperatura exterior) e amortecimento (os picos de temperatura interior são amenizados).

Conforto térmico

Considera-se que o nosso corpo está em conforto térmico quando, à nossa temperatura corporal normal, a taxa de produção de calor é igual à taxa de perda. Há no entanto vários fatores que influenciam o modo como geramos calor tais como a atividade física e mental e o metabolismo mais ou menos rápido e há fatores que influenciam a forma como perdemos calor tais como o isolamento corporal natural, as roupas, a temperatura, a humidade e a velocidade do ar.

Atualmente, existem “standards” internacionais no que toca ao conforto térmico e que são utilizados globalmente. Os mais utilizados são o ASHRAE 55-92 (1992) e o ISSO 7730 (1994). No entanto estes modelos consideram que o conforto térmico é resultante somente de variáveis físicas e fisiológicas, e prevêem as condições de conforto a um nível global o que leva a que os critérios de conforto sejam os mesmos quer se trate de um edifício num país frio ou num país quente.

Ora, hoje em dia, sabe-se que os critérios de conforto não só variam de pessoa para pessoa, como ainda mais de povo para povo e de clima para clima. Existem então já inúmeros estudos sobre algoritmos adaptativos que consideram também o comportamento adaptativo dos ocupantes dos edifícios — quer em termos de ações físicas, quer em termos de adaptação psicológica (como expectativas), relacionando ambos os fatores com o contexto climático [9]. O critério de conforto resultante da aplicação de algoritmos adaptativos é bem mais flexível e realista que os critérios convencionais como o ISO 7730 ou a ASHRAE, podendo a sua aplicação resultar numa diminuição muito significativa do consumo energético à escala mundial.

Efeito de estufa

É o fenómeno em que a radiação entra num local mas não consegue voltar a sair aquecendo assim o local em causa. Locais fechados por vidros são particularmente sujeitos a este fenómeno, visto o vidro ter um comportamento curioso em relação à radiação. O vidro é transparente para a radiação no espectro do visível mas é opaco para radiação com comprimento de onda mais elevado. O que acontece quando os raios solares entram numa casa é que vão aquecer os objetos que depois emitem radiação no espectro do infravermelho (maior comprimento de onda) que não consegue sair, ficando assim a energia retida no interior.

Este tipo de efeito é muito útil nas estações frias visto permitir armazenar calor. Exemplos frequentes são precisamente as estufas ou áreas envidraçadas que têm de ser muito bem acauteladas prevendo um sombreamento e ventilação adequada sobretudo em climas quentes.

Arquitetura Bioclimática
Efeito de estufa

Técnicas de construção bioclimática

Em [4] refere-se um método faseado para a definição da arquitetura de um edifício. Deve-se começar por estudar as características climáticas do local onde se pretende implantar a habitação, seguindo esse estudo por uma análise de quais as localizações específicas que se adaptam a uma utilização eficaz em termos de fatores de conforto humano (“bioclimatic chart”). De seguida devem ser considerados fatores técnicos associados a diversas vertentes, como orientação, cálculos de sombreamento, formato da habitação, movimentos do ar e avaliação das temperaturas internas. Finalmente, deve ser realizado um desenho arquitetônico que aproveite os resultados das fases anteriores de forma a contribuir com o plano de uma habitação bioclimática. Este método foca as particularidades regionais em termos de clima e às vezes mesmo de microclima inerentes a cada construção. Como tal, cada projeto bioclimático deve ser analisado isoladamente. Esta questão da envolvente é crucial no que respeita à Arquitetura Bioclimática, o que significa que já não basta a um arquiteto criar um projeto esteticamente bem conseguido e integrado com a envolvente urbanística, sendo necessário uma completa integração com o meio ambiente (efeitos dos edifícios envolventes em termos de exposição solar e ventos, radiação solar recebida ao longo do ano, etc).

GENERALIDADES

Nesta secção pretende-se abordar técnicas e preocupações que devem ser sempre incluídas em qualquer projeto, logo também em Portugal. São conceitos que conferem ao edifício uma boa construção e que permitem resolver muitos dos problemas que afetam os edifícios hoje em dia.

Forma e orientação do edifício

Quanto à orientação do edifício, o mais importante a ter em conta é a exposição solar. Normalmente é importante ter um edifício com a maior fachada voltada a Sul para receber o máximo de energia possível, tendo no entanto sombreamentos programados para o Verão. A orientação do edifício deve também contar com os ventos dominantes e a sua influência na ventilação natural e infiltrações.

A forma do edifício é importante pois influencia a superfície de contato edifício/exterior estando naturalmente relacionada com as perdas e ganhos de calor.

Assim, quanto mais compacto for o edifício, melhor.

Também influenciada pela forma do edifício é a exposição ao vento. Uma casa alta é sempre mais exposta que uma casa baixa. No Verão, a exposição ao vento é benéfica porque aumenta a ventilação, mas é prejudicial no Inverno. Conhecendo a predominância dos ventos no Verão e Inverno é possível chegar a um compromisso.

Arquitetura Bioclimática
Exemplo da relação entre o formato do edifício e os ventos.

Arquitetura Bioclimática
Esquema ilustrativo da correta orientação de um edifício

Existem ainda outras particularidades interessantes, tal como a orientação das diferentes divisões de uma casa de forma a proporcionar o ambiente mais adequada à sua função. Por exemplo, a biblioteca deve estar orientada com uma forte componente Norte, visto ser um local em que habitualmente se pretende uma atmosfera fresca e seca, enquanto que a cozinha deve estar orientada com uma forte componente Sul, visto ser esse um local onde uma temperatura elevada é mais habitual.

Massa térmica

A massa térmica é responsável pelo atraso entre o fornecimento de calor e o aumento da temperatura no interior do edifício. Este fenómeno pode ser explorado a diferentes níveis, nomeadamente em associação com um correto isolamento térmico e ventilação. Numa base diária, durante o Inverno, uma massa térmica estudada leva a que a energia recebida durante o dia se manifeste no interior durante a noite. No Verão a função é idêntica mas o calor pode ser libertado durante a noite para o exterior usando ventilação.

Arquitetura Bioclimática
Massa térmica eficiente (em cima): a variação térmica no exterior é elevada mas no interior é pequena; massa térmica menos eficiente (em baixo).

Também é possível este funcionamento em escalas de tempo mais elevadas, mas apenas massas térmicas enormes seriam capazes de tal proeza.

Generalizando, materiais de construção com massas elevadas comportam-se como massas térmicas eficazes.

Em Portugal, este é um fator essencial visto o maior problema de climas quentes, ou neste caso Mediterrâneos é o calor. Consequentemente, uma das preocupações ao construir edifícios é prever mecanismos que consigam evitar a entrada excessiva de calor e que consigam dissipar o calor que entra. Como tal, uma massa térmica elevada, associada a isolamento (preferencialmente externo) deve ser uma estratégia na construção em Portugal para preservar uma temperatura fresca durante o dia e apenas permitir libertação de calor à noite, altura em que se pode utilizar a ventilação nocturna para dissipar esse calor.

Esta ventilação nocturna pode ser assegurada por diversos mecanismos sofisticados mas funciona também a partir de uma das técnicas mais antigas e conhecidas: o abrir das janelas durante a noite!

Isolamento

Quanto ao isolamento, este previne a transferencia de calor por condução entre o interior e o exterior do edifício. Esta razão faz do isolamento uma característica essencial tanto no o Verão bem como no Inverno.

Por exemplo, em [24], refere-se que na construção de um edifício, as pontes térmicas devem ser evitadas tanto quanto possível, visto que podem constituir a fonte de até 30% das perdas de calor do edifício.

A preocupação com o isolamento deve ser considerada tanto a nível das superfícies opacas, como também a nível das áreas envidraçadas, visto ser esse um dos principais pontos de absorção e perda de radiação solar, tanto no Verão como no Inverno.

Arquitetura Bioclimática
Exemplo de um programa de modelação que permite calcular as pontes térmicas. Note-se que pelo fato de junto ao canto a temperatura ser menor, devido ao efeito de ponte térmica, haver condensação do vapor de água do ar o que propicia os conhecidos “bolores” e “humidades”.

Em termos de reabilitação urbana, é possível e bastante exequível, embora com alguns custos, a reabilitação de um edifício em termos de isolamento térmico, pelo exterior. O grande problema desta técnica é a possibilidade de vandalismo nos andares térreos e/ou acessíveis pelo exterior do edifício visto que não é muito resistente. Esta técnica deve ser implementada com o cuidado necessário de forma a não permitir a perda de calor pelo solo, e a deterioração da instalação nas esquinas dos edifícios.

Mesmo em edifícios novos esta técnica pode ser vantajosa pelo fato de eliminar pontes térmicas nos revestimentos dos edifícios. Este tipo de isolamento exterior já tem sido utilizado por diversas vezes em Portugal, sendo um dos exemplos a “Torre Sul” no Parque das Nações em Lisboa.

Também este edifício possui mecanismos que eliminam por completo a necessidade tanto de aquecimento como de arrefecimento artificiais.

SOLUÇÕES PARA ARREFECIMENTO NO VERÃO

Este tema é de fundamental importância para Portugal porque reduziria ou eliminaria qualquer tipo de necessidade de arrefecimento por ar condicionado e consequentemente reduziria em muito as necessidades energéticas em edifícios além de que traria enormes benefícios em termos de conforto.

Protecção da radiação no Verão

Como é obvio, no Verão os ganhos de calor têm de ser reduzidos ao mínimo. Felizmente o Sol encontra-se mais alto durante o Verão o que reduz a sua penetração em vãos voltados a Sul. A utilização de sombreamentos vai reduzir ainda mais esta penetração. Por fim, também o vidro contribui para a redução da captação de energia solar por radiação devido ao seu comportamento. É que a radiação incidente tem mais dificuldades a passar o vidro quanto maior for o ângulo.

Para além disso pode-se, hoje em dia, utilizar vidros com diferentes tipos de características, tais como vidros com baixa emissividade o que reduz consideravelmente os ganhos de calor. Por outro lado, o tamanho das janelas ou aberturas é também um fator de extrema importância no nosso clima. A área de fenestração deve ser cuidadosamente planeada para não ser exagerada e provocar condições de desconforto térmico.

Arquitetura Bioclimática
Exemplo de palas fixas numa situação de Inverno (à esquerda)
e numa situação de Verão (à direita)

Arquitetura Bioclimática
Influência do ângulo de incidência da radiação na sua penetração.
Inverno (em cima), Verão (em baixo)

No entanto, existem alguns problemas que necessitam uma atenção especial. Por um lado, o solestício de Verão não coincide com os dias mais quentes do ano o que significa que quando os dias mais quentes chegam, o Sol já está mais baixo, penetrando assim melhor nas janelas voltadas a Sul. Por outro lado, os dias são mais longos e com mais Sol que no Inverno. Ou seja, embora se consiga evitar a radiação direta, a difusa e refletida (das quais já foi falado em cima) permanecem e são também fatores importantes no aquecimento dos edifícios.

Entre as técnicas que se utilizam para reduzir a radiação que entra nos edifícios no Verão encontram-se as seguintes:

Arquitetura Bioclimática
Exemplos de sombreamentos naturais.

Pala fixa, que ao estar colocada no local correto e dimensionada de acordo com as cartas solares, impeça a passagem de radiação direta no Verão sem perturbar muito no Inverno.

Palas exteriores ajustáveis como estores, portadas ou toldos ou então sombreamento interior como cortinas e cortinados. Apesar dos mecanismos de sombreamento internos serem de manuseamento mais fácil, em virtude da sua acessibilidade, são cerca de 30% menos eficientes do que os mecanismos externos, visto que os primeiros estão localizados no interior do edifício e a reflexão da luminosidade nunca é conseguida a 100%, sendo parte da energia é absorvida pela habitação. Em mecanismos externos a energia é dissipada pela ventilação exterior, constituindo portanto um sistema mais eficiente.

Estruturas com plantas de folha caduca que promovem sombreamento no Verão e transparência no Inverno.

Utilização de árvores. Funcionam como sombreamento e ainda promovem o arrefecimento da área através da sua transpiração.

Utilização de cores claras (idealmente o branco), que não absorvam muita radiação solar.

As fachadas a Oeste e Leste, assim como o teto estão sujeitas a radiação muito intensa durante o Verão. Assim, devem ser incluídas poucas aberturas nestas zonas e a existir devem ser de pequena dimensão visto a sua única função ser ventilação e iluminação pois não são úteis para captura de radiação no Inverno.

Arquitetura Bioclimática
Exemplo de sombreamento com uma árvore de folha
caduca no Inverno (esquerda) e no Verão (à direita).

Sistemas de arrefecimento evaporativo

Como já foi referido a evaporação de água arrefece as zonas adjacentes pelo que podem ser consideradas pequenas fontes e zonas com plantas no projeto do edifício. No entanto muitas plantas vão levar a um aumento da humidade do ar o que pode reduzir o conforto térmico no Verão.

Este tipo de soluções cumprem um papel importante, não só em termos térmicos mas também em termos de conforto psicológico pois são sempre agradáveis esteticamente e produzem um efeito de habitabilidade. Existem ainda soluções diversas que propõem fontes de água dentro do edifício. Um exemplo disto é a fonte no Pavilhão de Civil do Instituto Superior Técnico, que infelizmente nunca chegou a funcionar. Para além disto existem inúmeras soluções que podem e devem ser utilizadas sobretudo num clima como o de Portugal. Exemplos são as “roof-ponds” ou sistemas de “roof-spraying”, que tal como os nomes indicam permitem um arrefecimento do telhado, promovendo a dissipação do calor da radiação solar através da evaporação da água.

Arquitetura Bioclimática
Exemplo de um sistema de “roof spraying”

SOLUÇÕES PARA AQUECIMENTO NO INVERNO

Captação solar

A energia solar é um fator determinante na arquitetura bioclimática. Desde sempre o Sol constituiu um ponto central na vida das comunidades humanas, sendo que todas as habitações eram construídas tendo em vista o ciclo solar, de forma a optimizar o efeito térmico, a higiene e os efeitos psicológicos a si associados.

A própria ação germicida da radiação solar levou a que alguns códigos de construção obrigassem à iluminação de todas as zonas habitacionais durante pelo menos 2 horas diárias em 250 dias do ano.

Arquitetura Bioclimática
Exemplo de mecanismos de captação solar

No Inverno, devido à diferença entre a temperatura no interior de um edifício e a temperatura exterior, existem perdas de energia, neste caso de calor, que para manter o conforto térmico necessitam ser compensadas. Num edifício moderno comum, o mais frequente é utilizarem-se sistemas de aquecimento para compensar estas perdas. Ora a Arquitetura Bioclimática propõe precisamente soluções que maximizam os ganhos solares de um edifício para que estes sejam os necessários, ou quase, para compensar as perdas, não havendo então necessidade de recorrer as sistemas de aquecimento artificiais. Estes sistemas incluem, fatores tão simples como a orientação do edifício e área de fenestração assim como sistemas mais complexos de captação de energia solar.

Os sistemas de captação de energia solar podem ser definidos por dois parâmetros: eficiência (energia retida vs. energia incidente) e atraso (tempo entre o armazenamento da energia e a sua libertação). Os sistemas de retenção classificam-se de diretos, indiretos e semi diretos. Nos diretos, como no caso das janelas comuns, o Sol penetra diretamente no edifício através do vidro, conseguindo-se eficiência máxima e atraso mínimo.

Arquitetura Bioclimática
Exemplo de uma parede de captação solar

Nos semi-diretos, a energia solar passa por um espaço intermédio onde o calor que transita para o interior pode ser controlado.

Nos indiretos, para reter a energia solar recorre-se ao efeito de estufa. A captação da energia dá-se num elemento montado logo após o vidro (com uns centímetros de intervalo) e o calor armazenado desloca-se para o interior por condução, convecção e radiação. Um exemplo são as famosas paredes “trombe” que possuem passagens ajustáveis que permitem controlar a transferência de calor. Um exemplo da aplicação destas paredes, que felizmente já são utilizadas com alguma frequência, é na “Casa Schäfer”.

Sublinha-se que o projeto deve sempre prever sombreamentos e obstáculos para os sistemas de captura de modo a que esta seja mínima no Verão e máxima no Inverno.

É bastante importante ter-se a noção de que em edifícios desenhados sem qualquer preocupação especial, a energia solar contribui com 20% para o seu aquecimento, podendo esse valor aumentar para 40% caso se dedique algum tempo a esta temática quando da concepção do edifício. É impressionante notar que se a preocupação com os ganhos solares associados aos edifícios estivesse generalizada em Portugal (como já acontece em cerca de 10% dos edifícios), a contribuição seria de cerca de 1Mtep, que era em 1997 cerca de 7% do total de energia final consumida!

Arquitetura Bioclimática
“Casa Schäfer”, Porto Santo. Fotografia do aspecto exterior de uma parede de Trombe; esquema do seu funcionamento consoante as estações do ano

VENTILAÇÃO

Na Arquitetura Bioclimática a ventilação é também muito importante, visto que num clima médio em termos de humidade e temperatura, pelo menos 1/3 do volume de ar de cada divisão deve ser substituído em cada hora, de forma a assegurar um nível de conforto, de qualidade do ar e de habitabilidade mínimo na divisão em causa.

Arquitetura Bioclimática
Óculo circular destinado à ventilação da sala.

No Verão, aumenta o conforto térmico, pois como já foi dito o movimento do ar aumenta as perdas de calor do corpo humano e como promove convecção forçada com as paredes, chão e tetos, ajuda a dissipar o calor. Todas as configurações ao nível das aberturas para ventilação podem ser estudas através do ensaio destas (configurações) em túneis de vento.

Em Portugal a ventilação é um dos fatores essenciais a ter em consideração na projecção de um edifício existindo já inúmeras hipóteses desde chaminés ditas “solares” até à simples ventilação cruzada.

Arquitetura Bioclimática
Pormenor de Funcionamento de Chaminé Solar.

No entanto, o grande desafio da ventilação é como fazer com que o ar entre dentro do edifício sem provocar alterações na temperatura interior. Existem várias soluções que podem ser aplicadas á ventilação. Uma delas, consiste em aproveitar a elevada massa térmica do solo como aliado.

Arquitetura Bioclimática
Esquema de funcionamento de um sistema de arrefecimento / ventilação durante um dia de Verão. De notar o mecanismo de tubos de ventilação enterrados.

Durante o Verão a temperatura do solo é inferior à do ar e no Inverno é superior, fazendo assim do solo um aliado. Existem efetivamente soluções que tiram partido deste fato como é o caso de um sistema que consiste em enterrar uma rede de condutas de ar de ventilação num local adjacente ao edifício.

O ar é captado a partir de uma abertura a uma certa distância do local e é introduzido no edifício. A vantagem deste sistema é que proporciona uma ventilação “condicionada”, ou seja no Verão a temperatura da terra é inferior à do ar e portanto o ar introduzido é mais frio do que o ar ambiente e promove o arrefecimento, acontecendo o inverso no Inverno.

Arquitetura Bioclimática
Plano do piso térreo da “Casa Solar Porto Santo”, em Porto Santo, que evidencia uma rede de tubos de ventilação enterrados no chão

ILUMINAÇÃO

A boa iluminação de um edifício, sobretudo com luz natural, é essencial ao seu bom funcionamento energético e ao conforto dos seus ocupantes. Aproximadamente 25% do consumo energético em edifícios é utilizado no sistema de iluminação. Estima-se aliás que por cada kWh de energia poupada em iluminação na estação quente contribui-se para uma poupança de cerca de 0,3kWh em ar condicionado.

Deste modo, o arquiteto deve sempre ter em consideração o arranjo das aberturas e distribuição das superfícies internas para garantir uma distribuição de luz adequada. O objetivo é portanto maximizar a área do edifício e pessoas com acesso à iluminação natural, dando prioridade a locais onde se desempenhem tarefas com maior exigência visual. Áreas de ocupação secundária ou pouco prolongada devem ser então remetidas para as zonas mais interiores do edifício.

Deve todavia ser considerado que um aumento da radiação que penetra no edifício leva também a um aumento do efeito de estufa aquecendo assim o edifício. As decisões de projeto devem assim ser ponderadas e optimizadas tendo em conta a localização e horário principal de utilização do edifício em causa.

Outro modo de solucionar de certa forma o problema do sobreaquecimento de edifícios com elevada área envidraçada, logo sujeitos a muita radiação solar, é jogar com a ventilação. Existem infinitas hipóteses para aberturas de iluminação que, ao mesmo tempo, permitem encontrar soluções de ventilação. É uma questão que depende quase que unicamente da criatividade do arquiteto.

As aberturas para iluminação natural podem ser subdivididas em: iluminação lateral, iluminação de cobertura, iluminação indireta (luz refletida), iluminação com luz direta do sol, iluminação de pátios, átrios, reentrâncias e as suas diversas combinações.

Arquitetura Bioclimática

Importa sublinhar que, sobretudo em climas como o de Portugal, a iluminação tem sempre de ser prevista tendo em atenção o fator de sobreaquecimento. Por esta razão, é importante nunca esquecer de prever sombreamentos eficientes e ventilação adequada e bem projetada de forma a que um bom efeito estético não se transforme num forno no período Verão!

Devido à natureza do trabalho em causa, parece-nos desnecessário entrar em pormenores em questões como implementação/orientação e aberturas nos edifícios, tipologias de aberturas, características do ambiente externo e interno e avaliação de desempenho luminotecnico e grandezas fotométricas.

Um ponto relevante em termos de optimização da componente de iluminação de um edifício prende-se com os sistemas de Gestão de Energia (BEMS). Estes constituem uma componente importante num quadro de reabilitação de edifícios, visto permitirem a optimização da eficiência energética de diversos componentes ativos, como a iluminação artificial.

Este tipo de sistema inclui por exemplo a instalação nas diversas áreas que necessitem de iluminação de sensores de presença evitando situações em que as luzes estão acesas sem necessidade. Em [23] sugere-se que existam sensores em zonas que possam ser servidas por iluminação natural (preferencial), de forma a que a iluminação artificial possa ir aumentando à medida que a iluminação natural desapareça e vice-versa. Isto permitiria manter a mesma qualidade de iluminação no edifício, privilegiando a iluminação natural sempre que possível. No entanto é importante alertar que embora estes sistemas permitam uma diminuição efetiva dos gastos em energia, é fundamental que permitam rapidamente a um utilizador ultrapassar o controlo automático. Aliás um outro ponto focado em [23] é o de sistemas autónomos de controlo da iluminação, mas que, em caso do utilizador preferir o modo manual, lhe indiquem em paralelo qual o dispêndio adicional de energia envolvido na operação alternativa, alertandoo assim para uma situação desfavorável.

E finalmente um ponto que é menosprezado normalmente é o que se refere à limpeza da iluminação e encaixes associados: por vezes cerca de 30% da luz é perdida desta forma. Claro que de forma a incentivar esta operação todo o sistema deve estar facilmente acessível para limpeza.

RECOMENDAÇÕES FINAIS

Nas secções anteriores descreveram-se algumas das muitas possibilidades que a Arquitetura Bioclimática propõe. No entanto, e como o que nos toca particularmente é a situação portuguesa, deixamos aqui uma chamada de atenção a alguns fatores, já referidos no texto, mas que dada a sua importância, queremos realçar.

É fundamental alterar a forma de construir em Portugal: princípios como o isolamento, a massa térmica, a orientação, a forma e até “detalhes” como a cor do revestimento dos edifícios têm absolutamente de merecer uma atenção muito especial por parte dos nossos arquitetos e engenheiros. Deve-se apostar num bom isolamento, utilizando soluções inovadoras, dando especial relevo às caixilharias das janelas, à prevenção das pontes térmicas etc., tudo soluções para as quais já existe oferta em Portugal, mesmo que através de empresas estrangeiras. Deve-se também privilegiar sempre que possível a tradição portuguesa no que toca à alvenaria, que no fundo funcionava perfeitamente como uma massa térmica eficiente. Desta forma também se recuperam e acarinham as tradições e os antigos costumes de construção que são apanágio da nossa cultura e do nosso património.

Questões essenciais são também a área de fenestração que não deve ser exagerada por contribuir para um sobreaquecimento do edifício. Por essa razão todas as áreas fenestradas devem prever algum tipo de sombreamento, de preferência exterior e manualmente ajustável. Situações como átrios e estufas podem e devem ser utilizadas mas sempre com muito rigor na sua projecção, nunca menosprezando uma ventilação suficiente e eficiente. Justamente a promoção de uma boa ventilação deve ser sempre prioritária no nosso clima, visto que o jogo entre ventilação diurna e nocturna aliados a uma eficiente massa térmica permitem resolver grande parte dos problemas de sobreaquecimento na estação quente.

Quanto à estação fria, o fato um edifício estar bem isolado já é uma vantagem à partida. No entanto podem-se prever soluções, tais como paredes de trombe, que permitiriam tornar desnecessária a utilização de aquecimento artificial durante o Inverno.

Por fim é recomendável prever mecanismos de dissipação de calor no Verão tais como o arrefecimento evaporativo, isto claro, para além da ventilação eficiente já referida.

Tecnologias associadas

Após esta apresentação do que são os pilares e técnicas da arquitetura bioclimática, importa também referir que por vezes há alturas que nem com o mais cuidado dos projetos se consegue conforto térmico.

É então necessário, contrariando alguns puristas da Arquitetura Bioclimática que admitem somente a utilização de mecanismos passivos, recorrer a sistemas ativos que permitem um enquadramento mais flexível, viabilizando assim projetos relacionados por exemplo com a reabilitação de certos edifícios em que uma solução totalmente passiva seria economicamente inviável.

Na secção seguinte apresentam-se apenas tecnologias relacionadas com a energia solar visto Portugal ter um potencial em energia solar riquíssimo e consequentemente acharmos que este setor será o mais vantajoso de ser desenvolvido.

SOLAR FOTOVOLTAICO

A tecnologia dos painéis solares fotovoltaícos permite converter energia solar em energia eléctrica. Hoje em dia a tecnologia dos painéis fotovoltaicos está bastante desenvolvida, atingindo-se eficiências na ordem dos 15-17%, podendo-se conseguir soluções esteticamente bastante agradáveis e integradas em grande parte das situações e onde o preço por kW ronda os 5000€.

Arquitetura Bioclimática
Exemplo de uma instalação de painéis fotovoltaicos

O solar fotovoltaico tem ainda outra vantagem que deriva do fato da cobertura dos painéis, que em regra geral é de vidro, ter que ser suficientemente resistente para permitir que as células fotovoltaicas não sejam afetadas nem por alterações significativas de temperatura nem por vibrações (som). Consequentemente, o revestimento de uma superfície com este tipo de painéis resulta num isolamento térmico e acústico superior a qualquer material no mercado que cumpra o mesmo fim. A este fato acresce ainda que a média do tempo de garantia de um painel solar fotovoltaico pode chegar a cerca de 30 anos.

Arquitetura Bioclimática
Exemplo de uma instalação de painéis fotovoltaicos

Atualmente o fotovoltaico, quando é utilizado, é na sua maioria em casos de injecção na rede, visto que os incentivos para este tipo de tecnologia passam pelo fato da EDP comprar o kW produzido por fotovoltaico mais caro do que aquilo que cobra pelo kW normal. Então os edifícios preferem utilizar a rede eléctrica nacional e produzir eletricidade que é injetada na rede. Por esta razão é preciso que o aumento da cota deste tipo de tecnologia seja aumentada gradualmente, senão é incomportável do ponto de vista da viabilidade da EDP. Um exemplo deste tipo de utilização em Portugal são as coberturas das bombas de gasolina da BP, cuja eletricidade produzida é totalmente incorporada na rede.

Este tipo de sistemas não tem tido o impacto nem uma expansão significativa visto exigir um investimento inicial muito grande, fator que leva muitas pessoas a não apostarem neste tipo de tecnologia.

SOLAR TÉRMICO ATIVO

A tecnologia de coletores solares permite que a energia solar também possa ser usada para aquecimento de água. A instalação destes sistemas leva a uma grande redução no consumo de energia eléctrica, pois mesmo quando radiação solar não chega para aquecer a água às temperaturas desejadas permite o seu pré-aquecimento.

Arquitetura Bioclimática
Exemplos de instalações de painéis solares para aquecimento de água

Por outro lado, pode-se utilizar um sistema de aquecimento central em que a água é aquecida por coletores solares. Isto é vantajoso até mesmo em “casas de fim de semana” ou de férias visto poder ficar sempre ligado e conseguir que a casa esteja pelo menos sempre a uma temperatura ambiente mais elevada que numa situação sem aquecimento.

Desde os anos 70 que se tem feito investigação nesta área e que se têm conseguido grandes avanços.

Atualmente, os painéis solares já não têm que ser inestéticos como se via há uns anos, mas sim podem e devem ser integrados na fachada dos edifícios. Como pode ser retirado da tabela seguinte as várias soluções apresentam diferentes custos, pelo que uma análise do fim a que se destina a instalação é sempre vantajosa.

Existem já várias soluções e vários tipos de coletores que conseguem atingir diferentes temperaturas permitindo diversificar as suas aplicações desde o funcionamento doméstico até à sua introdução em processos industriais. Como seria de esperar, os coletores de custo mais elevado são também os capazes de produzir aquecimentos superiores.

Tal como para os painéis fotovoltaicos, apesar de este tipo de tecnologia ser altamente vantajosa, visto que tira partido de uma fonte de energia inesgotável e gratuita, não tem conseguido expandir-se como deveria em Portugal. Aliás países como a Alemanha e Áustria, apesar de não terem uma situação tão favorável como Portugal em termos do recurso solar estão muitíssimo mais desenvolvidos, havendo desde logo um grande interesse da população em introduzir este tipo de tecnologias.

No entanto, têm existido diversas iniciativas têm sido levadas a cabo, sobretudo sob o impulso da comunidade cientifica portuguesa e sob a influência do Programa E4.

No diagrama seguinte é possível observar uma estimativa da distribuição da área de coletores a instalar por setor até 2010.

Software de apoio

Aparte as questões low-tech / high-tech relacionadas com a utilização de sistemas ativos, existe no entanto uma área em que inequivocamente as tecnologias de informação poderão dar um contributo considerável à arquitetura bioclimática e soluções de sustentabilidade em geral: ferramentas de modelação, monitorização e diagnóstico. Existem já inúmeras aplicações informáticas que permitem a um arquiteto ou a um engenheiro modelar um edifício e analisá-lo em termos de diversas variáveis bioclimáticas, como a ventilação, a temperatura nas várias divisões, etc. Em adição, possibilita a jusante no processo de desenvolvimento de um projeto, que um engenheiro possa validar computacionalmente se as técnicas introduzidas vão ao encontro das necessidades do edifício.

Estas tecnologias são também de grande utilidade no que concerne a reabilitação de edifícios, visto permitirem a análise de diversas sugestões de melhorias nas infraestruturas existentes e correspondente custo/benefício das mesmas, e também o diagnóstico do estado do edifício, por exemplo, através do uso da termografia de infravermelhos.

Nesta secção não pretendemos realizar uma listagem exaustiva das soluções existentes, mas sim descrever as que nos pareceram ter maior relevância para a temática da Arquitetura Bioclimática, envolvendo maioritariamente a análise de instrumentos passivos de climatização.

Conclusão

“ […] sustainable development is not a state of fixed harmony, but a process of change whereby the exploitation of resources, the direction of investment, the orientation of technological progress and changes to institutions correspond to the needs of both the present and the future. We cannot seek to affirm that this process will be simple or easy. On the contrary, it will be necessary to make difficult choices. For this reason, finally, sustainable development must be supported by political resolution[…].”

O nosso planeta sempre primou pela diversidade e por nos surpreender com as soluções mais inimagináveis. A Arquitetura Bioclimática, pelo fato de propor uma construção com soluções específicas a cada situação, é um desafio à criatividade de toda a comunidade e insere-se nesta lógica de diversidade tão essencial à sustentabilidade. Com o crescimento da população e aumento das suas exigências a nível de conforto, a implantação de soluções sustentáveis é premente e inevitável.

O desafio principal ao avanço desta área é nitidamente cultural e organizacional, associado à consciência ambiental da sociedade e não meramente a questões tecnológicas como muitas pessoas crêem.

Diversas tecnologias ambientais já atingiram um nível de maturidade que as tornam economicamente viáveis, visto que apesar de representarem um investimento inicial mais elevado, têm a contrapartida de um custo operacional praticamente nulo: um esquentador será certamente mais barato do que um painel solar, mas o gás consumido pelo primeiro será um custo para o consumidor durante toda a vida útil do mesmo, enquanto que o sol utilizado pelo painel é uma energia absolutamente gratuita e disponível sem preocupações para a humanidade durante os próximos milhões de anos.

Outros fatores de relevo impeditivos de um maior crescimento da área da arquitetura bioclimática prendem-se com a falta de pessoal qualificado e mecanismos de suporte financeiro à inovação. Não só existe falta de qualificação, como o percurso a seguir pelas pessoas qualificadas que pretendem promover esta área é bastante dificultado pela inexistência de mecanismos adequados.

A situação que se vive em Portugal é algo desanimadora, pois as empresas que exploram este tipo de soluções estão ainda um pouco atrasadas, e nem sempre aconselham os clientes da melhor maneira. Por esta razão, quem tem de trabalhar com estes equipamentos procura informação (e de seguida compra) a parceiros estrangeiros. Esta situação é particularmente chocante, pois sendo Portugal um “Kuwait solar” seria de esperar alguma inovação e incentivo a estas soluções. Ao invés, esbanjamos energias renováveis como ninguém e naturalmente, desejando um conforto térmico elevado, utilizamos a rede convencional como compensação.

Como conclusão, gostaríamos de deixar à consideração dos leitores algumas questões que nos surgiram no âmbito deste trabalho e cujas respostas não soubemos encontrar.

Como é que se explica que o Instituto Superior Técnico tenha construído um edifício há cerca de um ano, o edifício que alberga o Centro Médico e o Gabinete de Apoio ao Estudante, e que este não tenha beneficiado das técnicas de Arquitetura Bioclimática, tendo este Instituto justamente um núcleo de investigação nesta área? Como é que se quer que haja bons exemplos nos edifícios públicos se nem sequer num Instituto de Ensino e de Investigação com o prestigio do Instituto Superior Técnico, com os conhecimentos que aí existem, se aproveitam estas oportunidades? É caso para dizer, faz o que eu digo, mas não faças o que eu faço!

Por outro lado, porque razão os governos não incentivam de forma prioritária a opção das energias renováveis? Será por medo de perderem o controlo sobre uma das suas “vacas gordas”: a energia? Serão as vantagens em termos de ganhos ambientais a médio / longo prazo minorados em prol de impostos sobre os consumos energéticos mais imediatos? Será preferível investir numa nova estrada ou disponibilizar aquecimento solar para toda uma região? A verdade é que as autarquias e o Estado têm poder para promover a explosão da utilização de energias renováveis, mas não o fazem. Porquê? Será que ainda não nos apercebemos que o desenvolvimento sustentável e as energias renováveis são incontornáveis, sustentáculo de um futuro saudável e fonte de riqueza, permitindo a preservação dos nossos recursos e do nosso património natural?

Aliás, porque razão o programa E4 se limita a tecer recomendações e intenções, ao invés de avançar para medidas concretas, nomeadamente legislativas, que forcem o avanço deste mercado? É sem dúvida necessário um pontapé de saída para Portugal sair deste torpor!

Helder Gonçalves

Bibliografia

1. Achard, P., R. Gicquel. 1986. “European passive solar handbook: Basic principles and concepts for passive solar architecture”, Commission of the European Communities, (preliminary edition)
2. Agua Quente Solar para Portugal. 2001. ADENE/DGE/INETI
3. Anink, D., C. Boonstra, J. Mak. 1998. Handbook of sustainable building: An environmental Preference Method for selection of materials for use in construction and refurbishment. James&James (Science Publishers) Limited
4. CCE – Centro para a Conservação da Energia. 1993. “A Gestão da Energia e o Regulamento para a Gestão da Energia”. Direcção Geral de Energia
5. CCE – Centro para a Conservação da Energia. 2000. “Energia e Ambiente nas Cidades, uma Estratégia Global para a Expo 98”. Direcção Geral de Energia
6. Collares Pereira, M. 1998. “Energias Renováveis, a Opção Inadiável”, SPES – Sociedade Portuguesa de Energia Solar
7. Conceição, P. e Heitor, M. 2002. "Engenharia e mudança tecnológica: as dinâmicas do conhecimento e o desafio da inovação", em Brito, J.M.B., Heitor, M. e Rollo, M.F. (eds), "Engenho e Obra", Don Quixote, pp. 107-122
8. Conceição, P. and Heitor, M. 2003, "Systems of innovation and competence building across diversity: Learning from the Portuguese path in the European context" in Larisa V. Shavinina (Ed.). International Handbook on Innovation, Elsevier Science, pp.945-975
9. Correia Guedes, M. 2000. “Thermal Comfort and passive Cooling Design in Southern European Offices”, PhD. Thesis, University of Cambridge, Faculty of Architecture, Cambridge
10.Correia Guedes, M. 2003. “Arquitectura Bioclimática”, Revista Ambiente 21, 9:21-22, ed. Loja da Imagem.
11.Correia Guedes, M.; Anselmo, I.; Lopes, G.; Aguas, M. 2003. “An Energy Rehabilitation Project for IST’s DECivil Building”, Proceedings of the 3rd International Postgraduate Research Conference in the Built and Human Environment, ed. University of Salford, Blackwell Publishing, Salford, pp. 85-94.
12.EnerGaia – Agência Municipal de Energia de Gaia
13.Gonçalves, H. et al. 1997. Edifícios Solares Passivos em Portugal, INETI
14.Gonçalves, H., A. Joyce. L. Silva (editores). 2002. Fórum - Energias renováveis em Portugal: uma contribuição para os objectivos de política energética e ambiental
15.Gonçalves, H. et al. 2004. “Ambiente Construído, Clima Urbano e Utilização Racional de Energia nos edifícios da cidade de Lisboa”, INETI
16.Goulding, J. R., J. Owen Lewis, Theo C. Steemers. 1994. “Energy in architecture : the european passive solar handbook”, B. T. Batsford
17.Incropera F.P. e D.P. de Witt. 1998. “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons, 4ª Edição
18.Intelligent Energy – Europe; Global Work Programme 2003-2006; 15 October 2003
19.Olgyay V., A. Olgyay. 1973. “Design with climate : bioclimatic approach to architectural regionalism”, Princeton University Press
20.OECD 2004, "Science and Innovation Policy - Key Challenges and Opportunities", OECD, Paris
21.Piedade, A.C., A.M. Rodrigues e L.F. Roriz, “Climatização em edificios – envolvente e comportamento térmico”, Edição Orion
22.Prémios DGE 2003: Eficiência Energética em Edifícios
23.Thomas, R. 1996 “Environmental design : an introduction for architects and engineers”, E & FN Spon
24.Goulding, John R., J. Lewis, T. Steemers, 1993 “Energy Conscious Design – A Primer for Architects”, Commission of the European Communities
25.Sociedade Portuguesa de Energia Solar, www.SPES.pt
26.Portal das Energias Renováveis, www.energiasrenovaveis.com
27.www.energies-renouvelables.org
28.metaONG.info – Comunidade de Informações para o terceiro sector, http://www.metaong.info
29.www.escolavesper.com.br/ ciclo_do_carbono.htm
30.http://www.nols.edu
31.BRUNDTLAND REPORT: http://www.erf.es/eng/empresa/brundtland.html
32.http://rehabadvisor.com
33.http://www.aud.ucla.edu/energy-design-tools
34.http://www.kahl.net/ipse
35.http://www.shadowfx.co.uk
36.http://www.ulg.ac.be/lema/
37.http://solstice.crest.org
38.http://www.geocities.com/mleandror/indiceI.htm
39.http://www.moreme.pt
40.http://www.physics.ubc.ca

Fonte: www.gsd.inesc-id.pt

Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal