Facebook do Portal São Francisco Google+
+ circle
Home  Carboidratos - Página 5  Voltar

Carboidratos

Carboidratos, o que são?

Os carboidratos são considerados a fonte primária de energia para o organismo, uma vez que seu catabolismo possibilita a liberação de energia química para a formação de ATP (energia).

Fornecem primariamente combustível para o cérebro, medula, nervos periféricos e células vermelhas do sangue. Por esse motivo uma ingestão insuficiente pode trazer prejuízos ao sistema nervoso central e ao organismo.

Carboidratos, também chamados de glicídios ou glícides, são componentes orgânicos (macronutrientes cujos maiores representantes pertencem ao reino vegetal), constituídos por carbono, hidrogênio e oxigênio, podendo variar de açucares simples ou compostos.

Os carboidratos são classificados, segundo a sua estrutura molecular, numa série de grupos dos quais alguns são de muita importância, como os monossacarídeos que são os açucares simples (glicose, frutose e galactose), os dissacarídeos que são a combinação de dois monossacarídeos (sacarose, maltose e lactose) e os polissacarídeos que são formados a partir da junção de três ou mais monossacarídeos e se dividem em dois grupos, os polissacarídeos vegetais (amido e fibras) e os polissacarídeos animais (glicogênio).

Digestão

Quando ingeridos, os carboidratos estão sob forma de polissacarídeos e dissacarídeos que necessitam ser hidrolisados (quebrados) em açucares simples para serem absorvidos. A digestão dos carboidratos, assim como de outros nutrientes, inicia-se na boca com a mastigação, que fraciona o alimento e o mistura com a saliva.

Durante esse processo, a enzima amilase salivar secretada pelas glândulas parótidas (glândula salivar situada na região orofaríngea) inicia a quebra do carboidrato em dextrinas e maltoses que são moléculas menores. Esta enzima sofre inativação no estômago, assim que inicia a liberação de outras enzimas locais. Ainda no estômago, ocorrem contrações das fibras musculares da parede continuando o processo digestivo mecânico, que são os movimentos peristálticos, que tem a função de misturar as partículas dos alimentos com secreções gástricas. É importante ressaltar que a secreção gástrica não contém enzimas digestivas específicas para a quebra do carboidrato, ocorrendo, portanto, a movimentação do carboidrato para a parte inferior do estômago e da válvula pilórica. Após esse processo, a massa alimentar transforma-se em uma massa espessa chamada quimo, que irá ocupar o duodeno, a primeira porção do intestino delgado.

Dentro do intestino delgado os movimentos peristálticos continuam movendo o quimo ao longo do intestino delgado onde a digestão do carboidrato é finalizada através das secreções pancreática e intestinal.

As enzimas do pâncreas entram no duodeno através de um ducto e contém a amilase pancreática, responsável pela continuidade do processo do desdobramento do amido e da maltose. Já as secreções intestinais contêm três enzimas distintas, as dissacaridases sacarase, lactase e maltase, que atuam sobre os dissacarídeos para render os monossacarídeos glicose, frutose e galactose para absorção.

Desta maneira:

Fonte de enzima Enzima Substrato Produtos
Boca
Glândulas salivares
Amilase salivar (pitalina) Amido Dextrinas e Maltoses
Intestino Delgado
Pâncreas
Amilase pancreática Amilose e amilopectina Maltose, maltotriose e dextrinas a-limitantes
Mucosa Intestinal Borda em escova
Sacaridases intestinais a-dextrinas (isomaltase)

Sacarase
Maltase
Lactase

Dextrinas a-limitantes (isomaltase)
Sacarose
Maltose
Lactose
Glicose
Glicose e frutose
Glicose e glicose
Glicose e galactose

Alimentos fonte de carboidrato:

Cereais: arroz branco, arroz integral, cereal matinal, aveia

Massas e preparados: macarrão, tortas, bolos, pães, bolachas, etc.

Frutas: maça, banana, uva, melancia, caqui, goiaba, etc.

Leguminosas: feijão, ervilha, lentilha

Tubérculos: batata e mandioquinha

Fonte: www.rgnutri.com.br

Carboidratos

Os carboidratos são açúcares e participam da dieta de grande parte do mundo. Estão presentes em bolos, pães e biscoitos e é a partir da oxidação dessas biomoléculas que tem-se a principal via metabólica de obtenção de energia para a maioria das células não fotossintetizantes. Esta propriedade constitui uma das principais características dos carboidratos, pois estes ainda participam de estruturas como a parede celular de bactérias e de células vegetais, do glicocálix das células de organismos multicelulares, além de participarem da composição de líquidos lubrificantes nas articulações e no reconhecimento e da coesão célula-célula, dentre outras funções.

Os hidratos de carbono (carboidratos) são, em sua maior parte, poliidroxialdeídos ou poliidroxicetonas cíclicos ou substâncias que quando hidrolisadas liberam esses compostos. Sua fórmula geral é (CH2O)n podendo apresentar em sua estrutura átomos de nitrogênio, enxofre ou fósforo.

A classificação dos carboidratos é feita de acordo com o tamanho que estes assumem. São então classificados como monossacarídeos, oligossacarídeos ou polissacarídeos. Os carboidratos também podem ser encontrados em associação com outras biomoléculas, sejam elas proteínas ou lipídios, que, de uma forma geral, originam os chamados glicoconjugados.

Monossacarídeos

São os açúcares simples, como a D-gilcose (monossacarídeo mais abundante), ou a D-frutose, e que têm como propriedades físicas o fato de serem incolores, solúveis em meio aquoso, formarem sólidos cristalinos e possuírem sabor adocicado.

Carboidratos
D-glicose (aldohexose)

Carboidratos
D-frutose (cetohexose)

A estrutura de um monossacarídeo consiste em uma cadeia carbônica não-ramificada, apresentando ligações simples entre os carbonos. Um ou mais desses carbonos estão ligados a grupos hidroxilas, podendo haver carbonos assimétricos chamados de centros quirais. Esse tipo de carboidrato apresenta ainda um grupo carbonila, que define se é um aldeído ou uma cetona.

Carbonos Assimétricos

Carboidratos
D-gliceraldeído

Carboidratos
D-ribose

Carboidratos
D-glicose

Os monossacarídeos mais simples são constituídos por três átomos de carbono, como é o caso do gliceraldeído e da diidroxicetona, porém as unidades monossacarídicas podem ter quatro, cinco, seis, sete átomos de carbono, recebendo nome de tetroses, pentoses e assim por diante.

As tetroses e todos os outros monossacarídeos em solução aquosa ocorrem como estruturas cíclicas, onde o grupo carbonila reage com um grupo hidroxila da mesma molécula aumentando a complexidade desta e permitindo a formação de estereoisômeros a e ß, formando derivados chamados de hemicetais ou hemiacetais. Os anéis assim formados por seis elementos podem ser piranosídicos, quando há cinco ou mais carbonos na cadeia carbônica, ou furanosídicos, formados por cinco átomos no anel.

Carboidratos

Os monossacarídeos podem ser considerados como agentes redutores por poder serem oxidados com íons férrico (Fe3+) ou cúprico (Cu2+).

Oligossacarídeos

São constituídos pela união de duas ou mais unidades monossacarídicas. Os dissacarídeos são os oligossacarídeos mais comuns. Constituem-se a partir da união de monossacarídeos ligados covalentemente por ligação O-glicosídica, que ocorre quando um grupo hidroxila de uma molécula reage com o carbono anomérico da outra. Há, assim, a formação de acetal a partir de um hemicetal e de um álcool (um grupo hidroxila da 2ª molécula de açúcar).

Formação da Ligação Glicosídica

Carboidratos
a-D-glicose - ß-D-glicose - Maltose

Em azul e verde vê-se as extremidades hemicetais da a-Dglicose e da ß-D-glicose participando da ligação glicosídica acetal (em laranja) para a formação da maltose. Observe que depois da ligação glicosídica estabelecida ainda resta uma extremidade hemicetal livre, indicando que a maltose é um açúcar redutor.

Já a sacarose (açúcar comum elaborado pelos vegetais), formada por glicose e frutose possui átomos de carbonos anoméricos de ambos os monossacarídeos envolvidos na ligação glicosídica. A sacarose é portanto um açúcar não-redutor. Vale lembrar que açúcares não redutores são também chamados de glicosídios e que ao participarem de uma ligação glicosídica, seus carbonos anoméricos não podem mais ser oxidado por íons férrico(Fe3+) ou cúprico(Cu2+), não podendo agir como agente redutor nem apresentar forma linear.

Sacarose, um açúcar não redutor

Carboidratos

 

Há outro tipo de ligação glicosídica que reúne o átomo de carbono anomérico de um açúcar a um átomo de nitrogênio em uma glicoproteína. São as chamadas ligações N-glicosil, também encontradas em todos os nucleotídeos.

Polissacarídeos

São também chamados de glicanos e diferem entre si na identidade das unidades monossacarídicas que possuem e do tipo de ligação que fazem, no comprimento da cadeia de suas moléculas, e no grau de ramificação desta.

De acordo com o tipo de unidades monossacarídicas, podem ser classificadas em: homopolissacarídeos ou heteropolissacarídeos.

Os homopolissacarídeos são aqueles constituídos por apenas uma unidade monomérica e são formas de armazenamento de monossacarídeos que servirão de reserva energética, como o amido e o glicogênio, ou ainda como elementos estruturais, tal qual é o caso da celulose na parede bacteriana ou o da quitina, componente do exoesqueleto de artrópodes.

O amido e o glicogênio são constituídos por unidades de D-glicose unidas por ligações a1?4, sendo o amido composto por amilose e amilopectina. O primeiro componente do amido é uma cadeia linear não-ramificada e o segundo apresenta pontos de ramificação, onde as ligações são do tipo a1?6. Já o glicogênio, assim como a amilopectina, apresenta-se bastante ramificado, porém mais do que esta última. Além disso, é encontrado nas células animais em forma de grãos ou grânulos mais compactados do que aqueles de amido nos vegetais. Vale lembrar que a conformação mais estável para ligações do tipo a1?4 é a helicoidal compactada e estabilizada por pontes de hidrogênio.

A celulose e a quitina, diferentemente do amido e do glicogênio, apresentam ligações glicosídicas do tipo ß1?4 nas cadeias lineares, o que lhes confere estrutura tridimensional e propriedades físicas diferentes. A celulose apresenta-se como polímeros de ß-D-glicose, representado por uma série de anéis piranosídicos rígidos, mas onde a ligação C-O possui liberdade de rotação e cuja conformação mais estável é a de “cadeira’ rodada 180° em relação às unidades monossacarídicas vizinhas, o que lhe confere um rede estabilizadora de pontes de hidrogênio com intracadeias de grande resistência á tensão. A quitina difere da celulose basicamente por ser composta por unidade de N-acetilglicosamida e por ter um grupo amino acetilado em C2 ao invés de um grupo hidroxila, tal qual ocorre na celulose.

Os heteropolissacarídeos estão representados pelos peptidoglicanos, componentes das paredes bacterianas, e pelos glicosaminoglicanos, presentes na matriz extracelular de animais superiores.

Os peptidoglicanos são formados por unidades alternadas de N-acetilglicosamida e ácido N-acetilmurânico, ligados por ligações do tipo ß1?4. Em bactérias, as ligações cruzadas que estabelecem com proteínas fazem com que este polissacarídeo ligue-se fortemente a um revestimento da célula bacteriana conferindo à bactéria resistência e proteção contra a lise por osmose. O emprego de antibióticos como a penicilina inibem a formação das ligações cruzadas.

Os glicosaminoglicanos, por sua vez, são polímeros lineares com unidades repetitivas de dissacarídeos, sendo um de seus monossacarídeos a N-acetilglicosamida ou a N-acetilgalactosamina. A outra unidade monomérica é o ácido urômico (ácido D-glicurônico ou L-irudônico), o qual confere carga negativa ao polímero. Assim, em solução aquosa, este assume uma conformação estendida.

Os glicosaminoglicanos ligados á proteínas são chamados de proteoglicanos.

Glicoconjugados

Os glicoconjugados participam de estruturas como a membrana celular e a matriz extracelular, além de serem portadores de informações, podendo fornecer o endereçamento de proteínas, reconhecimento célula-célula e nada mais são do que associação de carboidratos, sejam eles oligossacarídeos ou polissacarídeos, com lipídios ou proteínas.

As glicoproteínas são formadas pela associação de carboidratos com proteínas como o próprio nome sugere. A ligação com a proteína se dá pela ligação do carboidrato com a hidroxila do resíduo de serina ou treonina (O-ligados), por meio do carbono anomérico. A ligação glicosídica pode também ser do tipo N-ligada, quando a ligação se dá com o nitrogênio da função amida do resíduo de Asn.

A associação do carboidrato à proteína pode alterar a solubilidade desta ou ainda intervir na seqüência de eventos que se processam no seu enovelamento (estrutura terciária), no caso de proteínas recém sintetizadas.

Lipídios também podem se associar aos açúcares e passam a ser chamados de glicolipídeos ou lipopolissacarídeos. Os gangliosídios, por exemplo, são componentes das membranas celulares de eucariotos e podem determinar, no caso das hemácias, os tipos de grupos sangüíneos. Já os lipopolissacarídeos estão presentes nas membranas de bactérias gram-negativas, o que ajuda o sistema imune do organismo infectado a reconhecer a presença de algo que não lhe é próprio e combatê-lo.

Fonte: www.bioq.unb.br

voltar 123456789avançar
Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal