Facebook do Portal São Francisco Google+
+ circle
Home  Cromossomos  Voltar

Cromossomos

DETERMINAÇÃO CROMOSSÔMICA DO SEXO

Cromossomos

1. Os cromossomos sexuais

Ao se comparar uma célula masculina com uma célula feminina, notam-se diferenças entre os seus cromossomos, que habitualmente se restringem a um par, chamados cromossomos sexuais ou alossomos. Todos os demais, idênticos nas células masculina e feminina, são autossomos. Compare, por exemplo, os cromossomos da mosca-da-fruta macho e da fêmea.

O macho possui um par de cromossomos sexuais no qual um deles é muito maior que o outro. O maior é o cromossomo X, enquanto o outro é o cromossomo Y. No núcleo das células femininas, há um par de cromossomos X, e não há cromossomo Y.

Esse tipo de diferenciação cromossômica só é encontrada nas espécies não-hermafroditas. Animais hermafroditas são aqueles que possuem os sistemas reprodutores masculino e feminino funcionantes em um mesmo indivíduo. A conhecida minhoca é um exemplo: no acasalamento, dois indivíduos se fecundam reciprocamente: os gametas masculinos de um fecundam os gametas femininos de outro, e vice-versa.

Dentre os animais e os vegetais, não é uniforme a presença de dois cromossomos sexuais iguais, nas fêmeas, e dois diferentes, nos machos. Esse achado é observado no homem e nas drosófilas, por exemplo. Cada uma das formas de diferenciação cromossômica entre as células masculinas e femininas é conhecida como um sistema cromossômico de determinação sexual. Os mais conhecidos são os sistemas XY, X0 e ZW.

2. Sistema XY

Nos organismos cuja diferenciação obedece ao sistema XY, o macho possui, em suas células, dois lotes de cromossomos autossomos (representados por 2A) e mais um par de cromossomos sexuais XY. As fêmeas possuem os mesmos dois lotes de autossomos e um par de cromossomos sexuais XX.

O sistema XY de determinação cromossômica do sexo é verificado em mamíferos, em muitos artrópodos e nos vegetais superiores.

Machos: 2A + XY gametas produzidos { A+X e A+Y
Fêmeas: 2A + XX gametas produzidos {A + X

Como os machos geram dois tipos de gametas (A + X e A + Y), o sexo masculino é heterogamético. O sexo feminino é homogamético, pois origina apenas um tipo de gameta (A + X). A determinação do sexo dos descendentes sempre é dependente do ancestral heterogamético. Portanto, é o gameta paterno que determina o sexo do filho.

Cromossomos

3. Sistema X0

O sistema de determinação cromossômica do sexo em muitos artrópodos, como besouros e gafanhotos, é conhecido como X0, e o número 0 indica a ausência de um cromossomo. Os machos possuem dois lotes de cromossomos autossomos e mais um cromossomo X, apenas. As fêmeas têm os mesmos dois lotes de autossomos e um par de cromossomos sexuais X.

Machos: 2A + X0 gametas produzidos {A+X e A
Fêmeas: 2A + XX gametas produzidos {A + X

Os machos geram dois tipos de gametas (A + X e A). Logo, o sexo masculino é heterogamético. O sexo feminino é homogamético, porque as fêmeas produzem apenas um tipo de gameta (A + X). O sexo dos descendentes é determinado pelo ancestral heterogamético. Assim como no sistema XY, é o gameta masculino que determina o sexo do descendente.

Cromossomos

4. Sistema ZX

Nesse sistema, encontrado em insetos, peixes, anfíbios e aves, há uma inversão em relação aos sistemas anteriormente estudados, pois o sexo masculino é homogamético e o feminino é heterogamético.

Machos: 2A + ZZ gametas produzidos {A + Z
Fêmeas: 2A + ZW gametas produzidos { A+Z e A+W
É o gameta feminino o responsável pela determinação do sexo do filhote.

5. A determinação cromossômica do sexo em abelhas
Nas abelhas, a determinação não segue os padrões habitualmente conhecidos. Os machos resultam do desenvolvimento de óvulos não fecundados, o que se chama partenogênese. Portanto, todas as suas células são haplóides (n), e eles geram espermatozóides por mitose, e não por meiose. As fêmeas são resultantes de fecundação, e são diplóides (2n)

A diferenciação dos zigotos diplóides em operárias (estéreis) e rainhas (férteis) é ambiental, e determinada pelo tipo de alimento fornecido para as larvas em desenvolvimento. As larvas que recebem a dieta básica originam as operárias, responsáveis pela proteção e pela limpeza da colméia, pela procura de alimentos e pela preparação dos favos que irão receber as novas abelhas. As larvas que recebem uma dieta especial, mais rica (a "geléia real"), se transformam em fêmeas férteis, as rainhas.

Cromossomos

Podemos observar, no esquema acima, que os gametas gerados pelos machos são cópias perfeitas dos óvulos maternos que os originaram. Um zangão transmite para os seus descendentes todos os genes que recebeu de sua mãe!

6. A cromatina sexual e as anomalias na determinação cromossômica do sexo

Segundo uma hipótese levantada por Mary F. Lyon, pesquisadora britânica, apenas um cromossomo X é ativo, nas células interfásicas. Todos os demais, independentemente de quantos sejam, são inativos e se condensam, podendo ser visualizados como um corpúsculo denso e aproximadamente esférico, localizado junto da face interna da carioteca.

Cromossomos

Esse cromossomo X inativo e condensado é chamado de cromatina sexual. O corpúsculo visto ao microscópio é o corpúsculo de Barr. A quantidade de corpúsculos de Barr encontrados em uma célula depende da quantidade total de cromossomos X que ela possui.
no.de corpúsculos de Barr = no. de cromossomos X - 1
Em uma célula masculina normal, com 44 autossomos mais um par de cromossomos sexuais XY:
B = 1 - 1 = zero ou (-)
Em uma célula feminina, na qual há 44 autossomos e um par XX:
B = 2 - 1 = 1 ou (+)

Na pesquisa da cromatina sexual, habitualmente são empregadas células de fácil obtenção, como as da mucosa da boca ou glóbulos brancos. Essa pesquisa é feita quando há dúvida quanto às características sexuais de um indivíduo, como nas malformações dos órgãos sexuais, que não permitem a definição do sexo de um recém-nascido. Outra utilização da pesquisa da cromatina sexual é o estudo das anormalidades na determinação cromossômica do sexo: a trissomia X, a síndrome de Turner e a síndrome de Klinefelter. São decorrentes de um defeito da meiose chamado não-disjunção, a falta de separação de um par de cromossomos durante a anáfase I da meiose que origina um determinado gameta. Ocorre mais freqüentemente com as mulheres, durante a formação de óvulos, do que na espermatogênese, nos homens.

O cariótipo 46, XXX, corresponde à trissomia X. Essas pessoas são do sexo feminino, geralmente férteis. Eventualmente, podem ser portadoras de um certo grau de retardo mental. A pesquisa da cromatina sexual tem resultado positivo (++).

O cariótipo 47, XXY, constitui a síndrome de Klinefelter. São pessoas do sexo masculino, de grande estatura, membros desproporcionalmente longos, testículos atrofiados e estéreis. Trata-se, fenotipicamente, de um homem, mas a pesquisa da cromatina sexual se revela positiva (+).

Pessoas com o cariótipo 45, X0, são portadoras da síndrome de Turner. São mulheres de baixa estatura, com uma prega de pele no pescoço ("pescoço alado"), ovários atrofiados e estéreis. Essas mulheres têm pesquisa de cromatina sexual negativa.

Cromossomos

Uma outra aberração da determinação cromossômica do sexo ocorre como conseqüência de um defeito na espermatogênese, que pode gerar um espermatozóide com dois cromossomos Y. Se esse espermatozóide fecundar um óvulo normal (com um cromossomo X), o zigoto resultante terá o cariótipo 47, XYY (síndrome do "duplo Y"). São fenotipicamente homens normais e férteis.

Fonte: biomania.com

Cromossomos

Conceito

Cromossomos (Kroma=cor, soma=corpo) são filamentos espiralados de cromatina, existente no suco nuclear de todas as células, que coram intensivamente com uso de corante citológico(carmin acético, orceína acética, reativo de Schiff), composto por DNA e proteínas, sendo observável à microcopia de luz durante a divisão celular.

Constituição

Em células em intérfase não se observama microscopia de luz, os cromossomos individualizados. Percebe-se no núcleo apenas o conjunto dos cromossomos formando uma massa denominada cromatina. A cromatina é constituída de nucleoproteínas (RNA e DNA em maior parte), além de proteínas globulares, fosfatídeos e elementos minerais tais como cálcio e magnésio. Ela pode se apresentar sob a forma de eucromatina ou de heterocromatina. A heterocromatina é a parte mais condensada e de maior coloração por corantes básicos em núcleos interfásicos, entretanto parece estar relacionada com menor atividade gênica.

DNA

O DNA, constituinte fundamental do cromossomo, é formado por bases nitrogenadas, entre elas as purinas, representadas pela adenina e guanina, e pelas piridimindas, representadas pela citosina e timina. No mRNA e timina é substituída pela uracila. A molécula de DNA é uma hélice dupla helicóidal, em que o filamento externo é constituído por fósforo e açúcar e a parte mais interna pelas ligação por pontes duplas de hidrogênio entre adenina e guanina e triplas entre citosina e timina.

DNA-Histonas

Outro aspecto importante é a associação entre DNA e histonas. As histonas formam um complexo juntamente com os grupos fosfatados do DNA carregados negativamente. As histonas são carregadas positivamente, sendo conhecidas por "proteínas básicas". As cargas positivas são fornecidas por uma alta proporção de aminoácidos lisina e arginina. Algumas histonas são denominadas "ricas em lisina" e outras "ricas em arginina". Em geral são encontradas somente nos organismos em que a diferenciação celular ocorre (eucariotas). São distinguidas, em função da proporção lisina/arginina, cinco diferentes tipos de histonas (h6, 2 H2A, 2 H2B e 2 h2). A complexação das histonas além de causar um aumento do diâmetro do DNA, de cerca de 20 a 30 angstron, muda também as propriedades físicas do DNA. A temperatura de fusão (temperatura na qual os fios de DNA mudam da forma de hélice dupla regular para a forma de fio simples, é bastante aumentada.

Propriedades

Se autoreproduzem durante as divisões nucleares conservando suas propriedades morfológicas e fisiológicas.

São entidades permanentes no núcleo. Células em condições de inanição apresentam numero de cromossomos constante.

Absorvem luz ultra-violeta ( 2600 Å)

Nos diplóides, cada cromossomo tem seu homólogo.

Estrutura

Em sua estrutura, o cromossomo apresenta a unidade estrutural filamentosa de DNA que se apresenta em forma de espiral, sendo envolvido por uma substância protéica denominada matriz. Destacam-se as seguintes partes:

Cromômeros- A cromatina não é um filamento uniforme, mas apresenta em toda sua extensão engrossamentos bastante irregulares com aspectos de granulações (Cromômeros). Seu tamanho e localização são constantes para cada cromossomo. Cromatídeos - É o resultado da divisão longitudinal do cromossomo durante a divisão celular. Centrômero- Constrição primária que divide o cromossomo em dois braços e influi no movimento durante a divisão celular. Comumente há um centrômero por cromossomo mas existem organismos dicêntricos ou policêntricos. Satélite - Porção terminal de material cromossômico separado do cromossomo por uma constrição secundária. Zona SAT - Região relacionada com a formação do nucléolo durante a telófase. O estudo da morfologia dos cromossomos por fixação e coloração básica é mais fácil durante a metáfase e anáfase da divisão celular, pois os filamentos apresentam-se mais compactos e condensados.

Tamanho e Posição do Centrômero

Os cromossomos se distinguem quanto ao tamanho, classificando-se como longos ( > 10 µM), médios (4-8 µM) e curtos (< 2 µM). Em certos organismos ou em partes de alguns organismos são encontrados cromossomos de tamanho consideravelmente maior que os demais. Esses cromossomos, denominados "gigantes". Um exemplo são os cromossomos politênicos, encontrados em células de glândulas salivares, esôfago, intestino e tubos de Malpighi de dípteros. São originados de uma série de divisões longitudinais dos cromossomos sem a separação dos cromatídeos (endomitose = multiplicação dos cromossomos, aumento do volume nuclear e celular sem divisão celular.) Também quanto a posição relativa dos centrômeros, podendo ser:

Metacêntrico: Centrômero mediano. Os dois braços tem relação de comprimento 1:1 até 2,5:1. (Forma de V)

Acrocêntrico: Centrômero próximo de um dos extremos do cromossomo. Relação de 3:1 a 10:1.

Telocêntrico: Centrômero estritamente terminal. O cromossomo tem um único braço.

Sub-metacêntrico.: Apresenta-se em forma de J. Cromossomos homólogos além de ter mesmo tamanho e manter a mesma posição relativa dos centrômero, apresentam mesma posição de constrições secundárias, presença de satélites e distribuição de cromômeros.

Cromossomos Sexuais e Autossomais

Outro fato importante é a distinção, em certas espécies, dos cromossomos autossomais e sexuais. Assim, por exemplo, os machos de algumas espécies, incluindo a espécie humana, o sexo está associado a um par de cromossomos morfologicamente diferente de seu homólogo (heteromórfico). Esses cromossomos são designados por X e Y. Os demais cromossomos são denominados de autossomais.

Cromossomos

Número de Cromossomos

O numero de cromossomo é, em geral, constante para os indivíduos de uma mesma espécie. O número básico de cromossomos da espécie ou o conjunto completo de cromossomos diferentes é denominado por genoma. Assim, o genoma humano é representado por 23 cromossomos. Em organismos diplóides as células somáticas apresentam 2n cromossomos no qual n veio de seu genitor feminino e os n restantes do genitor masculino. Pelo processo meiótico, formam-se gametas com n cromossomos. Assim, o estado haplóide, ou gamético, quando a espécie de referência é diplóide, contém o genoma da espécie. Espécies poliplóides, como por exemplo o trigo hexaplóide (6x = 42), podem tem em seus gametas mais de um genoma, conforme ilustrado a seguir

Célula Esp. Humana Drosophila Trigo
Somática 2x=46 2x=8 6x = 42
Gametas (n) n = 23 n = 4 n = 21
Genoma (x) x =23 x = 4 x = 7


O número de cromossomos não tem relação direta com a posição da espécie no esquema de classificação fílogenético. Por exemplo: o
Espécie
Número de Cromossomos
Humana
46
Milho
20
Ervilha
14
Drosophila
8
Dália
64
Tatu
64
Cavalo
64

Fonte: www.ufv.br

Cromossomos

DETERMINAÇÃO DO SEXO

Pela análise do cariótipo podemos distinguir o sexo em numerosos seres vivos. Esse fato decorre da existência de um sistema genético de determinação do sexo, condicionado por cromossomos especiais, denominados cromossomos sexuais. Tal determinação sexual compreende quatro tipos: XY, XO, ZWe ZO.

Tipo XY

O sistema XY ocorre no homem, nos demais mamíferos e nos insetos dípteros. As fêmeas são caracterizados por XX e os machos por XY.

Tipo XO

A determinação sexual do tipo XO ocorre em algumas espécies de insetos, pertencentes aos hemípteros (percevejos),ortópteros (baratas e gafanhotos)e coleópteros (besouros),além dos nematóides (vermes). Nesses casos as células macho apresentam um cromossomo a menos que a fêmea, porque falta oY. Assim, fala-se em fêmea XX e macho XO.

Tipo ZW

No sistema ZW os cromossomos sexuais são invertidos: o macho apresenta dois cromossomos sexuais iguais, ZZ, enquanto a fêmea apresentadois diferentes, umZ e outro W.Este sistema aparece em lepidópteros (borboletas, mariposas), peixes e aves.

Tipo ZO

Ocorre em galinhas domésticas e répteis. Os machos são homogaméticos, com dois cromossomos sexuais iguais (ZZ) e as fêmeas são heterogaméticas, apresentando apenas um cromossomo sexual Z.

Determinação Sexual pela Cromatina Sexual

A identificação do sexo por meio do exame de cromossomos sexuais só é possível nas células em divisão. Todavia, mesmo em células em interfase, nas quais não se distinguem os cromossomos, podemos determinar e identificar o sexo.

Determinação do Sexo por Haploploidismo

Nos himenópteros (abelhas, vespas e formigas) a determinação sexual não envolve cromossomos sexuais. A rainha é uma fêmea fértil, cujos óvulos fecundados produzem fêmeas diplóides, enquanto os óvulos não fecundados evoluem partenogeneticamente para machos haplóides. As fêmeas férteis (rainhas) ou estéreis (obreiras) são determinadas pelo tipo de alimentação que as larvas recebem durante o seu desenvolvimento.

Enquanto as larvas das futuras operárias recebem apenas mel e pólen, as larvas que evoluirão para rainhas recebem ainda a geléia real, uma secreção glandular das operárias adultas.

Determinação do Sexo pelo Balanço Gênico

Na Drosophila melanogaster, conhecida vulgarmente como mosca-da-fruta, o sexo depende de um balanço entre o número de cromossomos X e o número de lotes (conjuntos) de autossomos.

Ginandromorfismo

É o fenômeno pelo qual um indivíduo de uma espécie bissexuada tem um "mosaico" (desenho)de partes masculinas e femininas. Em tais espécies faltam os hormônios sexuais circulantes, de modo que o fenótipo depende exclusivamente dos genótipos de cada célula, resultando da soma dos efeitos dos mesmos sobre as células do animal.

Determinação não Genética do Sexo

Existem casos em que a determinação do sexo é realizada pela ação do meio ambiente. Na maioria das vezes têm grande importância os hormônios sexuais.

Na drosófila e em outros insetos, as características sexuais secundárias dependem dos cromossomos e não dos hormônios, o que se prova facilmente: o transplante de testículo ou de ovário para o sexo oposto não altera os caracteres sexuais secundários desses insetos.

Alguns exemplos:

a) Galinhas

Essas aves possuem um ovário normal do lado esquerdo e um testículo atrofiado do outro lado. Retirando-se o ovário, o testículo pode desenvolver-se e mudar o sexo para o masculino (reversão de sexo), aparecendo crista e plumagem vistosa, canto, porte ereto, e, inclusive, fertilidade como macho. O mesmo pode ser obtido pela remoção do ovário e implantação do testículo de um galo. A remoção dos testículos de um macho imaturo dará origem a uma ave com todas as características deuma galinha normal.

b) Gado Bovino

Na prenhez gamelar, em que os gêmeos são de sexos diferentes, o testículo do sexo masculino desenvolve-se antes que o ovário do feto feminino. Os hormônios masculinos, devido à fusão da corrente sangüínea na placenta passam ao organismo da fêmea, tornando-se esta interssexuada, estéril: é a chamada freemartin ou vaca maninha ou machorro.

c) Bonellia viridis

Trata-se de um verme equiurídeo que apresenta marcante dimorfismo sexual. A fêmea tem 8 cm de comprimento e sua tromba, quando distendida, chega a 1 m. O macho mede 1,5 mm de comprimento e vive na tromba da fêmea, alimentando-se de secreções desta. Trata-se de um animal de desenvolvimento indireto, ou seja, apresenta forma larvária. Quando a larva se desenvolve fora do organismo materno,origina uma fêmea; porém, quando se desenvolve dentro do organismo materno, dá origem a um macho, por ação hormonalda mãe. Se a larva for retirada do organismo da mãe antes da maturação completa, transformar-se-á em intersexuado.

Os Genes dos Cromossomos Sexuais

Os cromossomos X e Y apresentam um segmento homólogo, contendo genes alelos e duas regiões não homólogas, com genes não-alelos.

Os genes situados nos cromossomos sexuais são divididos em três grupos:

genes ligados ao sexo, que são os genes do segmento não homólogo de X;

genes holândricos, situados no segmento não-homólogo de Y;

genes parcialmente ligados ao sexo, isto é, genes localizados nos segmentos homólogos de X e Y.

Herança Ligada ao Sexo

Genes localizados exclusivamente no cromossomo sexual X são conhecidos como genes ligados ao sexo ou genes ligados ao X. A herança desses genes é conhecida como herança ligada ao sexo. Sendo as fêmeas XX e os machos XY, é evidente que os genes ligados ao sexo serão encontrados em dose dupla nas fêmeas e em dose simples nos machos.

Herança Holândrica ou Restrita ao Sexo

Os chamados genes holândricos são exclusivos do cromossomo Y. Tais genes só ocorrem nos indivíduos de sexo masculino e passam de geração a geração, sempre pela linhagem masculina.Atuando em dose simples, os genes holândricos nunca apresentam relação de dominância ou de recessividade.

Herança Influenciada pelo Sexo

É aquela em que os genes comportam-se como dominantes em um sexo e recessivos em outro. Tais genes não se localizam nos heterocromossomos, mas, sim, nos autossomos.

NÚCLEO CELULAR

Uma das principais características da célula eucarionte é a presença de um núcleo de forma variável, porém bem individualizado e separado do restante da célula:

Ao microscópio óptico o núcleo tem contorno nítido, sendo o seu interior preenchido por elementos figurados. Dentre os elementos distinguem-se o nucléolo e a cromatina.

Quando uma célula se divide, seu material nuclear (cromatina) perde a aparência relativamente homogênea típica das células que não estão em divisão e condensa-se numa serie de organelas em forma de bastão, denominadas cromossomos. Nas células somáticas humanas são encontrados 46 cromossomos.

Há dois tipos de divisão celular: mitose e meiose . A mitose é a divisão habitual das células somáticas, pela qual o corpo cresce, se diferencia e realiza reparos. A divisão mitótica resulta normalmente em duas células-filhas, cada uma com cromossomos e genes idênticos aos da célula-mãe. A meiose ocorre somente nas células da linhagem germinativa e apenas uma vez numa geração. Resulta na formação de células reprodutivas (gametas), cada uma das quais tem apenas 23 cromossomos.

OS CROMOSSOMOS HUMANOS

Nas células somáticas humanas são encontrados 23 pares de cromossomos. Destes, 22 pares são semelhantes em ambos os sexos e são denominados autossomos. O par restante compreende os cromossomos sexuais, de morfologia diferente entre si, que recebem o nome de X e Y. No sexo feminino existem dois cromossomos X e no masculino existem um cromossomo X e um Y.

Cada espécie possui um conjunto cromossômico típico ( cariótipo ) em termos do número e da morfologia dos cromossomos. O número de cromossomos das diversas espécies biológicas é muito variável.

O estudo morfológico dos cromossomos mostrou que há dois exemplares idênticos de cada em cada célula diplóide. Portanto, nos núcleos existem pares de cromossomos homólogos . Denominamos n o número básico de cromossomos de uma espécie, portanto as células diplóides apresentarão em seu núcleo 2 n cromossomos e as haplóides n cromossomos. Cada cromossomo mitótico apresenta uma região estrangulada denominada centrômero ou constrição primária que é um ponto de referência citológico básico dividindo os cromossomos em dois braços: p (de petti) para o braço curto e q para o longo. Os braços são indicados pelo número do cromossomo seguido de p ou q; por exemplo, 11p é o braço curto do cromossomo 11. Além da constrição primária descrita como centrômero, certos cromossomos apresentam estreitamentos que aparecem sempre no mesmo lugar: São as constrições secundárias.

De acordo com a posição do centrômero, distinguem-se alguns tipos gerais de cromossomos:

Metacêntrico

Apresenta um centrômero mais ou menos central e braços de comprimentos aproximadamente iguais.

Submetacêntrico

O centrômero é excêntrico e apresenta braços de comprimento nitidamente diferentes.

Acrocêntrico

Apresenta centrômero próximo a uma extremidade.Os cromossomos acrocêntricos humanos (13, 14, 15, 21, 22) têm pequenas massas de cromatina conhecidas como satélites fixadas aos seus braços curtos por pedículos estreitos ou constrições secundárias.

Fonte: www.biologiaviva.hpg.ig.com.br

Cromossomos

Um cromossomo ou cromossoma é uma longa sequência de DNA, que contém vários genes, e outras sequências de nucleótidos com funções específicas nas células dos seres vivos.

Nos cromossomos dos eucariontes, o DNA encontra-se numa forma semi-ordenada dentro do núcleo celular, agregado a proteínas estruturais, as histonas, e toma a designação de cromatina. Os procariontes não possuem histonas nem núcleo. Na sua forma não-condensada, o DNA pode sofrer transcrição, regulação e replicação.

Durante a mitose (ver divisão celular), os cromossomos encontram-se condensados e têm o nome de cromossomos metafásicos e é a unica ocasião em que se podem observar com um microscópio óptico.

O primeiro investigador a observar cromossomos foi Karl Wilhelm von Nägeli em 1842 e o seu comportamento foi descrito em detalhe por Walther Flemming em 1882. Em 1910, Thomas Hunt Morgan provou que os cromossomos são os portadores dos genes.

Cromossomos

Cromossomos dos eucariontes

Os eucariontes possuem múltiplos cromossomos lineares dentro do núcleo celular. Cada cromossomo tem um centrómero e um ou dois braços saindo do centrómero, os cromatídeos. As extremidades dos cromossomos possuem estruturas especiais chamadas telómeros. A replicação do DNA pode iniciar-se em vários pontos do cromossomo.

Cromossomos dos procariontes

Os cromossomos das bactérias podem ser circulares ou lineares. Algumas bactérias possuem apenas um cromossomo, enquanto outras têm vários. O DNA bacteriano toma por vezes a forma de plasmídeos, cuja função não se encontra bem definida.

Cromossomos

Cromossomo. (1) Cromatídeo. Cada um dos dois braços idênticos dum cromossomo depois da fase S. (2) Centrómero. O ponto de ligação de dois cromatídeos, onde se ligam os microtúbulos. (3) Braço curto. (4) Braço longo.

Cromatina

Conhecem-se dois tipos de cromatina:

Eucromatina, que consiste em DNA activo, ou seja, que se pode expressar como proteinas, e Heterocromatina, que consiste em DNA inactivo e que parece ter funções estruturais durante o ciclo celular. Podem ainda distinguir-se dois tipos de heterochromatin: Heterocromatina constitutiva, que nunca se expressa como proteínas e que se encontra localizada à volta do centrómero (contém geralmente sequências repetitivas); e Heterocromatina facultativa, que, por vezes, se expressa.

Cromossomos

Diferentes níveis de condensação do DNA. (1) Cadeia simples de DNA . (2) Filamento de cromatina (DNA com histonas). (3) Cromatina condensada em interfase com centrómeros. (4) Cromatina condensada em profase. (Existem agora duas cópias da molécula de DNA) (5) Cromossoma em metafase

Nos primeiros estados da mitose, os filamentos de cromatina tornam-se cada vez mais condensados. Eles deixam de funcionar como material genético acessível e formam uma estrutura muito condensada. Eventualmente, os dois cromatídeos (filamentos de cromatina condensada) tornam-se visíveis como um cromossoma, ligados no centrómero. Microtúbulos longos associam-se ao centrómero e a dois extremos opostos da célula. Durante a mitose, os microtúbulos separam os cromatídeos e puxan-nos em direcções opostas, de maneira a que cada célula filha herde um conjunto de cromatídeos. Após a divisão das células, os cromatídeos descondensam-se e podem funcionar de novo como cromatina. Apesar da sua aparência os cromossomas têm uma estrutura complexa (Fig. 2). Por exemplo, os genes com funções similares estão muitas vezes juntos no núcleo, mesmo que estejam bastante distanciados no cromossoma. O curto braço de um cromossoma pode ser esticado por um cromossoma satélite que contém informação para codificar RNA ribossómico.

Espécie # de cromossomos Espécie # de cromossomos Drosófila 8 Humano 46 Centeio 14 Macaco 48 Cobaio 16 Carneiro 54 Rôla 16 Cavalo 64 caracol 24 Galo 78 Minhoca 32 Carpa 104 Porco 40 Borboleta ~380 Trigo 42 Samambaia ~1200

Os membros normais de uma espécie em particular possuem todos o mesmo número de cromossomas (Tabela 1). As espécies que se reproduzem assexuadamente têm um conjunto de cromossomas, que é igual em todas as células do corpo. As espécies que se reproduzem sexuadamente têm células somáticas, que são diplóides [2n] (têm dois conjuntos de cromossomas, um proveniente da mãe e outro do pai) ou poliplóides [Xn] (têm mais do que dois conjuntos de cromossomas), e gâmetas (células reprodutoras), que são haplóides [n] (têm apenas um conjunto de cromossomas). Os gâmetas são produzidos por meiose de uma célula diplóide da linha germinativa. Durante a meiose, os cromossomas correspondestes do pai e da mãe podem trocar pequenas partes de si próprios (crossover), e assim criar novos cromossomas que não foram herdados unicamente de um dos progenitores. Quando um gâmeta masculino e um gâmeta feminino se unem (fertilização), forma-se um novo organismo diplóide.

Cariótipo

Para determinar o número (diplóide) de cromossomas de um organismo, as células podem ser fixadas em metafase in vitro com colquicina. Estas células são então coradas (o nome cromossoma foi dado pela sua capacidade de serem corados), fotografadas e dispostas num cariótipo (um conjunto ordenado de cromossomas, Fig. 3). Tal como muitas espécies com reprodução sexuada, os seres humanos têm cromossomas sexuais especiais (diferentes dos autossomas para as funções corporais). Estes são XX nas fêmeas e XY nos machos. Nas fêmeas, um dos dois cromossomas X está inactivo e pode ser visto em microscópio como os corpos de Barr.

Aberrações cromossómicas

O funcionamento defeituoso quer da segregação cromossómica quer do crossover pode provocar doenças graves. Estas podem ser divididas em dois grupos:

Anomalia cromossómica ou displasia cromossómica parcial (malformação), que resultam normalmente de um crossover anormal. Alguns exemplos são: Síndroma Cri-du-Chat, que é causada pela delecção de parte do braço curto do cromossoma 5. As vítimas emitem sons agudos que se assemelham ao miado de um gato. Têm os olhos afastados, cabeça e maxilar pequenos e atraso mental. Síndroma de Wolf-Hirschhorn, que é causada pela delecção parcial do braço curto do cromossoma 4. É caracterizada por crescimento tardio acentuado e deficiência mental. Falta ou excesso de cromossomas, chamada aneuploidia, que resulta de uma segregação cromossómica incompleta e está muitas vezes relacionada com o cancro. Alguns exemplos são: Síndroma de Down (um cromossoma 21 a mais). Também é conhecida como mongolismo ou trissomia 21. Os sintomas são controlo muscular diminuído, crânio assimétrico, olhos oblíquos e atraso mental. Síndroma de Klinefelters (XXY). Os homens com síndroma de Klinefelter são normaçmente estéreis. TÊm tendência a ter braços e pernas mais compridos e a ser mais altos do que é comum. Outros sintomas comuns são fadiga, apatia, falta de sentimento e uma tendência maior para desenvolver distúrbios psicológicos. Síndroma de Turner (X em vez de XX ou XY). Na síndroma de Turner, as características sexuais femininas existem mas subdesenvolvidas. As pessoas que sofrem de síndroma de Turner tÊm muitas vezes pequena estatura, testa estreita, características oculares e desenvolvimento ósseo anormais, nomeadamente no peito (pectus excavatum).

Fonte: pt.wikipedia.org

voltar 123avançar