Facebook do Portal São Francisco
Google+
+ circle
Home  Alavanca - Página 3  Voltar

Alavanca

Arquimedes deu grandes contribuições à matemática teórica. Além disso, é famoso por aplicar a ciência à vida diária. Por exemplo, descobriu o princípio que leva seu nome enquanto se banhava. Também desenvolveu máquinas singelas como a alavanca ou o parafuso, e aplicou-as a usos militares e de irrigação. Arquimedes (287-212 a.C.), famoso matemático e inventor grego. Escreveu importantes obras sobre geometria plana e espacial, aritmética e mecânica. Nasceu em Siracusa, na Sicília, e estudou em Alexandria, no Egito. Antecipou- se a muitas das descobertas da ciência moderna no campo da matemática pura, como o cálculo integral, com seus estudos sobre áreas e volumes de figuras sólidas curvas e sobre as áreas de figuras planas. Demonstrou também que o volume de uma esfera equivale a dois terços do volume do cilindro que a circunscreve. Em mecânica, definiu a lei da alavanca e é considerado o inventor da polia composta. Durante sua estada no Egito, inventou o "parafuso sem fim" para elevar o nível da água. Mas é conhecido principalmente por ter enunciado a lei da hidrostática, o chamado princípio de Arquimedes. Essa lei estabelece que todo corpo submerso em um fluido experimenta perda de peso igual ao peso do volume do fluido que o corpo desloca. Diz-se que essa descoberta foi feita enquanto o matemático se banhava e meditava sobre um problema que lhe fora apresentado pelo rei: como distinguir uma coroa de ouro puro de outra que contivesse prata. Observando o deslocamento e transbordamento da água à medida que seu corpo submergia, concluiu que se a coroa, ao submergir, deslocasse quantidade de água equivalente a seu peso em ouro, isto significaria que não continha outro metal. Conta-se que ficou tão entusiasmado que saiu nu para a rua gritando heureka, palavra grega que significa "achei". Arquimedes passou a maior parte de sua vida na Sicília, em Siracusa e arredores, dedicado à pesquisa e aos experimentos. Embora não tivesse nenhum cargo público, durante a conquista da Sicília pelos romanos pôs-se à disposição das autoridades e muitos de seus instrumentos mecânicos foram utilizados na defesa de Siracusa. Entre os aparatos de guerra cuja invenção lhe é atribuída está a catapulta e um sistema de espelhos (talvez lendário) que incendiava as embarcações inimigas ao focá-las com os raios de sol. Durante a conquista de Siracusa, na segunda Guerra Púnica, foi assassinado por um soldado romano que o encontrou desenhando um diagrama matemático na areia.

Conta-se que Arquimedes estava tão absorto em suas operações que ofendeu o intruso ao dizer-lhe: "Não desmanche meus diagramas". Muitas de suas obras sobre matemática e mecânica foram preservadas, entre elas o Tratado dos corpos flutuantes, Arenário e Sobre o equilíbrio dos planos. Alavanca, máquina simples que consiste normalmente em uma barra rígida móvel em torno de um ponto fixo, denominado fulcro ou ponto de apoio. O efeito de qualquer força aplicada à alavanca faz com que esta gire em relação ao fulcro. A força rotativa é diretamente proporcional à distância entre o fulcro e a força aplicada. No tipo mais comum de alavanca, aplica-se um esforço relativamente pequeno à ponta mais distante do fulcro, para levantar um grande peso próximo a este. Muitas ferramentas, como o quebra-nozes e o carrinho de mão, são baseadas no princípio da alavanca. Polia, dispositivo mecânico de tração ou elevação, formado por uma roda montada em um eixo, com uma corda rodeando sua circunferência. A roda e seu eixo podem ser considerados tipos especiais de alavanca. Com um sistema de polias móveis (também chamado cadernal), é possível levantar grandes pesos com muito pouca força. O segundo princípio importante da estática dos fluidos foi descoberto por Arquimedes.

O princípio de Arquimedes afirma que todo corpo submerso num fluido experimenta uma força para cima igual ao peso do fluido deslocado por aquele corpo. Isso explica como um navio pesado consegue flutuar. Também permite determinar a densidade de um objeto cuja forma seja tão irregular que seu volume não possa ser medido diretamente. Mecânica de fluidos, parte da física que se ocupa da ação dos fluidos em repouso ou em movimento, assim como das aplicações e mecanismos de engenharia que os utilizam. A mecânica de fluidos é fundamental em campos tão diversos como a aeronáutica (ver Avião), a engenharia química, civil e industrial, a meteorologia, a construção naval (ver Navios e construção naval) e oceanografia. Pode ser subdividida em dois campos principais: a estática dos fluidos, ou hidrostática, que se ocupa de fluidos em repouso, e a dinâmica de fluidos, que trata de fluidos em movimento. O termo "hidrodinâmica" aplica-se ao fluxo de líquidos ou ao fluxo de gases a baixa velocidade em que o gás é essencialmente incompressível. A hidráulica lida principalmente com a utilização da pressão da água ou do óleo em engenharia. Entre as aplicações da mecânica de fluidos estão a propulsão a jato, as turbinas, os compressores e as bombas (Ar comprimido).

ESTÁTICA DOS FLUIDOS

Uma característica fundamental de qualquer fluido em repouso é que a força exercida sobre qualquer partícula do fluido é a mesma em todas as direções. Esse conceito é conhecido como lei de Pascal. Quando a gravidade é a única força que atua sobre um líquido colocado num recipiente aberto, a pressão em qualquer ponto do líquido é diretamente proporcional à profundidade do ponto, e é independente do tamanho ou forma do recipiente.

DINÂMICA DE FLUIDOS

Lida com as leis dos fluidos em movimento. O primeiro avanço importante foi feito por Evangelista Torricelli, que relacionou a velocidade de saída de um líquido pelo orifício de um recipiente com a altura do líquido situado acima de tal orifício (teorema de Torricelli). O grande avanço seguinte no desenvolvimento da mecânica de fluidos teve que aguardar a formulação das leis do movimento pelo matemático e físico inglês Isaac Newton. Essas leis foram aplicadas aos fluidos pelo matemático suíço Leonhard Euler. Ele foi o primeiro a reconhecer que as leis da dinâmica de fluidos só podem expressar-se de forma relativamente simples se se supõe que o fluido é incompressível e ideal, isto é, se se pode ignorar os efeitos do atrito e a viscosidade. Mas como esse nunca é o caso de fluidos reais em movimento, os resultados de tal análise só podem servir como uma estimativa para os fluxos em que os efeitos da viscosidade são pequenos. Tais fluidos seguem os princípios do teorema de Bernoulli. As leis da mecânica dos fluidos podem ser observadas em muitas situações cotidianas. Por exemplo, a pressão exercida pela água no fundo de um tanque é igual à exercida pela água no fundo de um tubo estreito, desde que a profundidade seja a mesma. Se um tubo comprido cheio de água for inclinado, de forma que sua altura máxima seja de 15 m, a pressão será a mesma que nos outros casos (esquerda). Num sifão (direita), a força hidrostática faz com que a água flua para cima, por sobre a borda, até que se esvazie o cubo ou se interrompa a sucção.

Fonte: Enciclopédia Encarta

Alavanca

ALAVANCAS DO CORPO

 Alavanca

Para que o sangue possa alcançar todo o organismo, a liberdade de movimento das articulações do esqueleto está sujeita a certos limites: as partes móveis podem girar, no máximo, de 160º . Como não é possível a um membro destacar-se de sua articulação, para mover-se ele deve girar em torno do ponto em que está fixado. Assim, seus movimentos se realizam de acordo com o princípio de funcionamento da alavanca. Uma alavanca é basicamente, uma haste rígida fixada a um ponto de apoio. O ponto sobre o qual está apoiada a alavanca chama-se fulcro. A distância deste ao ponto de aplicação da força de tração (isto é, a potência) é chamada braço da potência, enquanto a distância entre o fulcro e o ponto de aplicação da força resistente (a resistência) denomina-se braço de resistência. Nessas condições, se o braço da resistência for maior que o braço da potência, esta última deve ser maior que a resistência, para haver equilíbrio. Na situação inversa, uma determinada resistência é equilibrada por uma potência menor. Existem, então, três tipos de alavanca: interfixa, como a lâmina de uma tesoura; interpotente, como uma pinça; e interresistente, como um carrinho de mão ou quebra-nozes

 Alavanca

O braço oferece, simultaneamente, exemplos de alavancas interfixa e interpotente. O antebraço é estendido pela distensão do músculo tríceps, e retraído pela contração do bíceps. Considerando em ambos os casos que o ponto de aplicação de resistência está na mão e que o fulcro é constituído pelo cotovelo, o movimento de tensão do braço pode ser explicado como o de uma alavanca interfixa (na medida em que a mão e a junção do tríceps ao antebraço se situam em lados opostos com relação ao cotovelo). A contração do braço pode ser considerada como acionada por um mecanismo de alavanca interpotente.

De fato, a junção do bíceps, que representa a potência, com o antebraço está situada entre o cotovelo e a mão. A distância do fulcro ao ponto de aplicação da potência é, em ambos os casos, oito ou dez vezes menor que o braço de resistência. Assim, uma pessoa que se colocasse em pé, com os cotovelos colocados aos flancos e os antebraços na horizontal, tendo em cada mão um peso de 20kgf, submeteria seus dois bíceps a forças de 200 kgf.

 Alavanca

O conjunto formado pelo músculo gastrocnêmico da perna (a potência), pelo calcanhar (o fulcro) e pelo pé (a resistência) constitui outro exemplo de alavanca intefixa. Uma alavanca interresistente é representada pela mandíbula. O fulcro está situado em sua junção com o crânio. A potência é o músculo que a comanda, o masseter, que a ela se liga em um ponto próximo ao queixo. A resistência é representada pela força com que o alimento reage a mastigação.

Fonte: br.geocities.com

Alavanca

Funcionamento da alavanca

 Alavanca

“Dêem-me um ponto de apoio: levantarei o mundo”

Este módulo propõe atividades pedagógicas cujo objetivo é compreender que girar um sólido, por uma força de grandeza definida, será mais ou menos eficiente conforme a distância entre o eixo de rotação e o lugar onde essa força é aplicada.

O estudo é realizado a partir de um objeto específico: a alavanca.

Esta é constituída por uma barra rígida móvel em volta de um eixo de rotação chamado ponto de apoio. Uma alavanca modifica a força a ser aplicada. Além do objeto, a finalidade é aprender que o mesmo princípio está sendo usado em outros dispositivos técnicos.

Escolhemos a ponte levadiça, que não é uma alavanca no sentido estrito, mas cujo funcionamento baseia-se no mesmo princípio. Uma aula é destinada ao reconhecimento do princípio das alavancas nos organismos vivos.

Por meio desses exemplos, queremos ilustrar o interesse e a complementaridade de aproximações relacionadas a diferentes disciplinas: buscar um princípio geral (dispositivos técnicos, o mundo do vivente); construção; procura por uma solução técnica; e estudo de mecanismos.

Assim, para levantar determinado objeto, pode-se, no limite, empregar uma força tão pequena quanto quiser, salvo se for utilizada uma alavanca suficientemente grande. “Dêem-me um ponto de apoio: levantarei o mundo”, disse Arquimedes três séculos antes de nossa era. Mas, em compensação, percebe-se que o objeto é levantado a uma altura menor. Este último aspecto, totalmente geral, tem grande importância teórica, pois está ligado ao princípio da conservação da energia.

 Alavanca

Nesta configuração, a carga (cinco porcas grandes na caixa à direita) não pode ser levantada pela força provocada pelas seis porcas pequenas na caixa à esquerda.

 Alavanca

Aproximando-se o ponto de apoio da carga, torna-se possível levantá-la.

 Alavanca

Se a força provocada pela caixa à esquerda é aplicada mais perto do ponto de apoio, ela não consegue mais levantar a carga.

Fonte: www.cdcc.usp.br

voltar 123456avançar
Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal