Facebook do Portal São Francisco
Google+
+ circle
Home  História Da Matemática - Página 11  Voltar

História da Matemática



Algarismo

No ano de 825 d.C. o trono do Ímpério Árabe era ocupado pelo Califa al-Mamum. Ele tinha interesse que seu reino se transformasse em um grande centro de ensino, onde se pudesse dominar todas as áreas do conhecimento. E para atingir esse objetivo, contratou e trouxe para Bagdá os grandes sábios muçulmanos daquela época.

Entre esses sábios estava al-Khowarizmi, o maior matemático árabe de todos os tempos, e foi destinado a ele a função de traduzir para o árabe os livros de matemática vindos da Índia.

Numa dessas traduções al-Khowarizmi se deparou com aquilo ainda hoje é considerado, a maior descoberta no campo da matemática:O Sistema de Numeração Decimal. al-Khowarizmi ficou tão impressionado com a utilidade daqueles dez símbolos, que hoje são conhecidos como: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9, que escreveu um livro explicando como funciona esse sistema. Através desse livro Sobre a Arte Hindú de Calcular matemáticos de todo o mundo ficaram conhecendo o Sistema Decimal.

O termo algarismo usado para denominar os símbolos de 0 a 9 é uma homenagem a esse matemático árabe que mostrou a humanidade a utilidade desses dez e magníficos símbolos.Observe a semelhança entre algarismo e al-Khowarizmi.

Álgebra

Por volta do ano 400 d.C., uma idéia audaciosa de um estudioso de Alexandria começou a mudar toda a história da matemática.
Esse estudioso era Diofante de Alexandria, que viveu de 325 a 409 e seus estudos se basearam no uso de símbolos para facilitar a escrita e os cálculos matemáticos. Os Símbolos criados por Diofante fizeram com que as expressões, até então escritas totalmente com palavras, pudessem ser representadas com abreviações.

Diofante viveu numa época muito tumultuada, presenciando, por exemplo, a queda do Império Romano, e isso, não foi nada bom para a matemática, que teve todo um processo de desenvolvimento interrompido devido ao clima de guerra que se criou e principalmente pela destruição de muitos centros de estudos, fazendo com que a simbologia de Diofante não saísse do estágio inicial.

Só no ano de 650 aproximadamente, com a ascensão do Império Árabe, é que houve uma retomada dos estudos matemáticos.
De 786 a 809 no reinado do Califa Harun al-Raschid (o mesmo das mil e uma noites) os muçulmanos conquistaram vários territórios, fazendo surgir grandes cidades, centros de comércio e de artesanato. Todas essas atividades comerciais, as viagens marítimas e através do deserto, provocaram um grande desenvolvimento dos conhecimentos matemáticos.

Em 809, com a morte de al-Raschid, seu filho al-Mamum assumiu o trono e governou até 833.

al-Mamum criou em Bagdá um centro de ensino e contratou os mais brilhantes sábios muçulmanos da época. Entre eles estava Mohamed Ibn Musa al-Khowarizmi, grande matemático que escreveu um livro chamado al-jabr, que significa restauração e refere-se a mudança de termos de um lado para outro de uma equação. Provavelmente o termo Álgebra se originou do título desse livro.

al-Khowarizmi, deu sua contribuição, mas como muitos matemáticos de diversas épocas, não conseguiu expressar as equações totalmente em símbolos. Isso só aconteceu 700 anos depois, quando França e Espanha estavam em guerra, e para evitar que seus planos fossem descobertos pelos inimigos tanto franceses com espanhóis, usavam códigos em suas mensagens. Mas os espanhóis não se deram bem com essa estratégia, pois, sempre que um mensageiro de suas tropas era capturado, os franceses rapidamente descobriam seus planos militares.

"Os franceses têm um pacto com o diabo" diziam os espanhóis, até o Papa foi chamado para resolver a questão.

O demônio era François Viète um advogado francês, capaz de decifrar os códigos secretos das mensagens espanholas.

Apaixonado por álgebra, François Viète viveu de 1540 até 1603 e passou para a história como o principal responsável pela introdução dos símbolos no mundo da matemática. Por isso, ficou conhecido como o Pai da Álgebra.

Além de Viète, outros matemáticos da mesma época deram suas contribuições para o aperfeiçoamento da álgebra. Entre eles, Robert Record, inglês que criou o símbolo (=) para a expressão (igual a). Esse sinal foi usado foi usado por Thomas Harriot, outro matemático inglês, responsável pela eliminação das poucas palavras que ainda restavam na álgebra de Viète.

A passagem para uma álgebra completamente simbólica foi obra de René Descartes, grande matemático e filósofo francês, que introduziu as seguintes inovações para aperfeiçoar a álgebra de Viète:

1) criou o símbolo (.) para a operação de multiplicação;

2) criou a notação que usamos hoje para os expoentes de uma potenciação:

3) passou a usar as primeiras letras do alfabeto para os coeficentes da incógnita e os termos independentes (se literais) e as últimas letras para representar as incógnitas.

Cálculo

A palavra cálculo vem do latim calculus, que significa pedrinhas ou pequenas pedras.

Acredita-se que à muitos milhares de anos, quando o homem não dominava nenhum sistema de contagem, os pastores para controlar a quantidade de ovelhas de seus rebanhos utilizavam essas pequenas pedras.

Pela manhã, o procedimento era o seguinte: para cada ovelha que saía do cercado guardava-se uma pedra num saquinho. No fim do dia cada pedrinha guardada no saquinho pela manhã era retirada assim que cada ovelha retornava ao aprisco, dessa forma eles podiam saber se todas as ovelhas tinham retornado.

Essa prática desenvolvida pelos pastores para fazer contas utilizando pedras, deu origem a palavra calcular, que é tanto utilizada na matemática e que significa, contar com pedras.

Frações

Todos os anos, no mês de julho, as águas do Rio Nilo inundavam uma vasta região ao longo de suas margens. As águas do Rio Nilo fertilizavam os campos, beneficiando a agricultura do Egito. Cada pedaço de terra às margens desse rio era precioso e tinha que ser muito bem cuidado.

Por volta do ano 3000 a.C. o Faraó Sesóstris repartiu essas terras entre uns poucos agricultores privilegiados.

Só que todos os anos em setembro quando as águas baixavam, funcionários do governo faziam a marcação do terreno de cada agricultor. Esses funcionários eram chamados de agrimensores ou estiradores de corda. Isso se explica pelo fato de que usavam cordas com uma unidade de medida assinalada, essa corda era esticada para que se verificasse quantas vezes aquela unidade de medida estava contida nos lados do terreno. Mas na maioria das vezes acontecia da unidade de medida escolhida não caber um número inteiro de vezes nos lados do terreno.

Para solucionar o problema da medição das terras, os egípcios criaram um novo número, o número fracionário, que era representado representado com o uso de frações.

Os egípcios entendiam a fração somente como uma unidade, portanto, utilizavam apenas frações unitárias (com numerador igual a 1).

A escrita dessas frações era feita colocando um sinal oval sobre o denominador.

No Sistema de Numeração usado pelos egípcios os símbolos se repetiam com muita frequência, tornando os cálculos com números fracionários muito complicados.

Com a criação do Sistema de Numeração Decimal, pelos hindus, o trabalho com as frações tornou-se mais simples, e a sua representação passou a ser expressa pela razão de dois números naturais.

Geometria

Geometria significa "medida da terra". Mas o que se tem de mais interessante ao se estudar a história, é que os primeiros passos no estudo da geometria foram dados com base numa hipótese falsa. Acreditava-se que a Terra era plana, portanto, todas as pesquisas foram feitas segundo essa crença, mas isso não impediu o desenvolvimento da geometria.

Foi no período grego, entre 600 e 300 a.C., que a geometria se firmou como um sistema organizado, e muito disso se deve a Euclides, mestre na escola de Alexandria (Cidade do Egito, famosa por seu farol), que publicou por volta de 325 a.C. Os Elementos, uma obra com treze volumes, propondo um sistema inédito no estudo da Geometria.

Esse trabalho de Euclides é tão vasto que alguns historiadores não acreditaram que fosse obra de um só homem.

Mas essas desconfianças não foram suficientes para tirar o mérito de Euclides o primeiro a propor um método para um estudo lógico da matemática.

Grau

Em qualquer livro de matemática encontramos afirmações de que o ângulo reto mede 90º e que o ângulo raso mede 180º. Mas qual é a razão para os valores serem justamente 90 e 180.

Para entendermos isso, retornaremos ao ano de 4000 a.C., quando egípcios e árabes estavam tentando elaborar um calendário. Nessa época, acreditava-se que o Sol girava em torno da Terra numa órbita que levava 360 dias para completar uma volta. Desse modo, a cada dia o Sol percorria uma parcela dessa órbita, ou seja, um arco de circunferência de sua órbita. A esse arco fez-se corresponder um ângulo cujo vértice era o centro da Terra e cujos lados passavam pelas extremidades de tal arco. Assim, esse ângulo passou a ser uma unidade de medida e foi chamado de grau ou ângulo de um grau.

Pode-se concluir, então, que para os antigos egípcios e árabes o grau era a medida do arco que o Sol percorria em torno da Terra durante um dia.

Hoje, sabemos que é a Terra que gira em torno do Sol, mas, contudo, manteve-se a tradição e convencionou-se dizer que o arco de circunferência mede um grau quando corresponde a 1/360 dessa circunferência.

Número Concreto

Há mais de 30000 anos, o homem vivia em pequenos grupos, morando em grutas e cavernas para se esconder dos animais selvagens e proteger-se da chuva e do frio. Os caçadores para registrar os animais mortos numa caçada eles se limitavam a fazer marcas numa vara.

Nessa época o homem se alimentava daquilo que a natureza oferecia: caça, frutos, sementes, ovos.

Quando descobriu o fogo, aprendeu a cozinhar os alimentos e a proteger-se melhor contra o frio.

A escrita ainda não tinha sido criada. Para contar, o homem fazia riscos num pedaço de madeira ou em ossos de animais.

Um pescador, por exemplo, costumava levar consigo um osso de lobo. A cada peixe que conseguia tirar da água, fazia um risco no osso.

Mais ou menos há 10000 anos, o homem começou a modificar bastante o seu sistema de vida. em vez de apenas caçar e coletar frutos e raízes, passou a cultivar algumas plantas e a criar animais. Era o início da agricultura, graças à qual aumentava muito a variedade de alimentos de que podia dispor.

E para dedicar-se às atividades de plantar e criar animais, o homem não podia continuar se deslocando de um lugar para outro como antes. Passou então a fixar-se num determinado lugar, geralmente às margens de rios e lagos. Abandonou o hábito de abrigar-se em cavernas e desenvolveu uma nova habilidade: a de construir sua própria moradia.

Começaram a surgir as primeiras comunidades organizadas, com chefe, divisão do trabalho entre as pessoas etc.

Com a lã das ovelhas eram tecidos panos para a roupa.

O trabalho de um pastor primitivo era muito simples. De manhã bem cedo, ele levava as ovelhas para pastar. À noite recolhia as ovelhas, guardando-as dentro de um cercado.

Mas como controlar o rebanho? como ter certeza de que nenhuma ovelha havia fugido ou sido devorada por algum animal selvagem?

O jeito que o pastor arranjou para controlar seu rebanho foi contar as ovelhas com pedras. Assim: Cada ovelha que saías para pastar correspondia a uma pedra. O pastor colocava todas as pedras em um saquinho. No fim do dia, à medida que as ovelhas entravam no cercado, ele ia retirando as pedras do saquinho. que susto levaria se após todas as ovelhas estarem no cercado, sobrasse alguma pedra!

Esse pastor jamais poderia imaginar que, mulhares de anos mais tarde, haveria um ramo na Matemática chamado cálculo, que em latim quer dizer contas com pedras.

Foi contando objetos com outros objetos que a humanidade começou a contruir o conceito de número.

Para o homem primitivo o número cinco, por exemplo, sempre estaria ligado a alguma coisa concreta: cinco dedos, cinco peixes, cinco bastões, cinco animais, e assim por diante.

A idéia de contagem estava relacionada com os dedos da mão. Assim, ao contar as ovelhas, o pastor separava as pedras em grupos de cinco. Do mesmo modo os caçadores contavam os animais abatidos, traçando riscos na madeira ou fazendo nós em uma corda, também de cinco em cinco.

Para nós, hoje, o número cinco representa a propriedade comum de infinitas coleçõesde objetos: representa a quantidade de elementos de um conjunto, não importando se se trata de cinco bolas, cinco skates, cinco discos ou cinco aparelhos de som.

É por isso que esse número, que surgiu quando o homem contava objetos usando outros objetos, é um número concreto.

NÚMERO NATURAL

No século VI foram fundados na Síria alguns centros de cultura grega. consistiam numa espécie de clube onde os sócios se reuniam para discutir exclusivamente a arte e a cultura vindas da Grécia.

Ao participar de uma conferência num destes clubes, em 662, o bispo sírio Severus Sebokt, profundamente irritado com o fato de as pessoas elogiarem qualquer coisa vinda dos gregos, explodiu dizendo:

"Existem outros povos que também sabe alguma coisa! Os hindus, por exemplo, Têm valiosos métodos de cálculos. São métodos fantásticos! E imaginem que os cálculos são feitos por meio de apenas nove sinais!".

A referência a nove, e não a dez símbolos, significa que o passo mais importante dado pelos hindus para formar o seu sistema de numeração - a invenção do zero - ainda não tinha chegado ao Ocidente.

A idéia dos hindus de introduzir uma notação para uma posição vazia - um ovo de ganso, redondo - ocorreu na Índia, no fim do século VI. Mas foram necessários muitos séculos para que esse símbolo chegasse à Europa.

Com a introdução do décimo sinal - o zero -, o sistema de numeração tal qual o conhecemos hoje estava completo.

Hoje, estes símbolos são chamados de algarismos indo-arábicos.

Se foram os matemáticos hindus que inventaram o nosso sistema de numeração, o que os árabes têm a ver com isso? E por que os símbolos 0 1 2 3 4 5 6 7 8 9 são chamados de algarismos?

Número Negativo

Os matemáticos chineses da antiguidade, tratavam os números como excessos ou faltas. Os chineses realizavam cálculos em tabuleiros, onde representavam os excessos com palitos vermelhos e as faltas com palitos pretos.

Na Índia, os matemáticos tabém trabalhavam com esses estranhos números.Brahmagupta, matemático nascido no ano 598 d.C., afirmava que os números podem ser entendidos como pertences ou dívidas.

Mas, sem símbolos próprios para que se pudesse realizar as operações, os números absurdos, como eram chamados, não conseguiam se firmar como verdadeiros números..

Depois de várias tentativas frustadas, os matemáticos conseguiram encontrar um símbolo que permitisse operar com esse novo número. Mas como a história da matemática é cheia de surpresas, não poderia de faltar mais uma: Ao observar a prática adotada pelos comerciantes da época, os matemáticos verificaram que se no início do dia, um comerciante tinha em seu armazém duas sacas de feijão de 40 quilogramas cada, se ao findar o dia ele tivesse vendido 7 quilogramas de feijão, para não se esquecer de que naquele saco faltavam 7 quilogramas, ele escrevia o número 7 com um tracinho na frente (-7). Mas se ele resolvesse despejar no outro saco os 3 quilogramas que restavam, escrevia o número 3 com dois tracinhos cruzados na frente (+3), para se lembrar que naquele saco havia 3 quilogramas a mais de feijão do que a quantidade inicial.

Os matemáticos aproveitaram-se desse expediente e criaram o número com sinal: Positivo (+) ou Negativo (-).

Pi: o Número

Os egípcios sabiam trabalhar muito bem com razões. Descobriram logo que a razão entre o comprimento de uma circunferência e o seu diâmetro é a mesma para qualquer circunferência, e oseu valor é um número "um pouquinho maior que 3".

É essa razão que hoje chamamos pi.

Considerando c o comprimento de uma circunferência e d o diâmetro, temos:

c/d = pi

c = pi . d

O cálculo do valor exato de pi ocupou os matemáticos por muitos séculos.

Para chegar ao valor de pi exprsso por 3 1/6, que é aproximadamente 3,16, os egípcios há 3 500 anos partiram de um quadrado inscrito em uma circunferência, cujo lado media 9 unidades. Dobraram os lados do quadrado para obter um polígono de 8 lados e calcularam a razão entre os perímetros dos octógonos inscrito e circunscrito e o diâmetro da circunferência.

Os egípcios conseguiram uma aproximação melhor que a dos babilônios, para os quais "o comprimento de qualquer circunferência era o triplo de seu diâmetro", o que indicava o valor 3 para pi.

Por volta do século III a.C., Arquimedes - o mais famoso matemático da Antiguidade, que viveu e morreu em Siracusa, na Grécia - também procurou calcular a razão entre o comprimento de uma circunferência e o seu diâmetro.

Começando com um hexágono regular, Arquimedes calculou os perímetros dos polígonos obtidos dobrando sucessivamente o número de lados até chegar a um polígono de 96 lados.

Calculando o perímetro desse polígono de 96 lados, conseguiu para pi um valor entre 3 10/71 e 3 10/70. Ou seja, para Arquimedes pi era um número entre 3,1408 e 3,1428.

voltar 1 2 3 4 5 6 7 8 9 10 11 avançar
Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal