Facebook do Portal São Francisco
Google+
+ circle
Home  Radiação  Voltar

Radiação

 

Quando pensamos em radiação, logo nos vem à lembrança o poder destruidor das bombas atômicas ou o perigo das usinas nucleares. Mas a fonte mais comum de radiação é a própria luz solar. No cotidiano, estamos em contato com várias outras fontes de radiação: refrigeradores, secadores, microondas etc. Outras fontes são geradas pela emissão de ondas de rádio, televisão e celular. Existem radiações ionizantes e não ionizantes.

Tipos de radiação

Radiação não ionizante

São radiações de baixa frequência: luz visível, infravermelho, microondas, frequência de rádio, radar, ondas curtas e ultrafrequências (celular). Embora esses tipos de radiação não alterem os átomos, alguns, como as microondas, podem causar queimaduras e possíveis danos ao sistema reprodutor. Campos eletromagnéticos, como os criados pela corrente elétrica alternada a 60 Hz, também produzem radiações não ionizantes.

Radiação ionizante

São as mais perigosas e de alta frequência: raios X, raios Gama (emitidos por materiais radiativos) e os raios cósmicos. Ionizar significa tornar eletricamente carregado. Quando uma substância ionizável é atingida por esses raios, ela se torna carregada eletricamente. Quando a ionização acontece dentro de uma célula viva, sua estrutura química pode ser modificada. A exposição à radiação ionizante pode danificar nossas células e afetar o nosso material genético (DNA), causando doenças graves, levando até à morte.

Danos ao organismo

O maior risco da radiação ionizante é o câncer! Ela também pode provocar defeitos genéticos nos filhos de homens ou mulheres expostos. Os danos ao nosso patrimônio genético (DNA) podem passar às futuras gerações. É o que chamamos de mutação. Crianças de mães expostas à radiação durante a gravidez podem apresentar retardamento mental.

A exposição a grande quantidade de radiação é rara e pode causar doenças em poucas horas e até a morte. A maioria do conhecimento sobre os riscos da radiação ionizante se baseia nos estudos feitos com os 100 mil sobreviventes da barbárie praticada pelos norte-americanos na 2ª guerra mundial, com a explosão das bombas atômicas em Hiroshima e Nagasaki, no Japão.

Fora das guerras, o perigo nuclear está, principalmente, nos riscos operacionais das usinas. Os maiores problemas são os rejeitos radioativos, que podem contaminar o solo e seus lençóis d’água e o risco de vazamento. O vazamento da Usina de Tchernobyl, em 1986, na antiga União Soviética, fez milhares de vítimas. Em 1979, houve vazamento na usina de Three Miles Islands, nos EUA.

No Brasil, um acidente em Goiânia, em 1987, levou à morte várias pessoas que tiveram contato com uma ampola contendo Césio-147, encontrada num lixo hospitalar.

O maior risco da radiação ionizante é o câncer! Ela também pode provocar defeitos genéticos nos filhos de homens ou mulheres expostos.

Quanto maior a dose de radiação recebida por uma pessoa, maior a chance dela desenvolver câncer. A maioria dos tipos de câncer só aparecem muitos anos depois da dose de radiação ser recebida (tipicamente de 10 a 40 anos).

Há evidências de que qualquer exposição à radiação pode causar danos à saúde. Isto é, não existe nível de exposição seguro ou sem risco.

Qualquer atividade que explore, manipule, produza ou utilize material radioativo gera resíduos radioativos, principalmente mineração de produtos radioativos e geração de energia nuclear. Vários processos industriais, atividades militares, e pesquisas científicas, além de setores da medicina e odontologia, geram subprodutos que incluem resíduos radioativos.

Qualquer atividade envolvendo radiação ou exposição deve ser justificada em relação a outras alternativas e produzir um benefício líquido positivo para a sociedade. É o chamado Princípio da Justificação.

Como se proteger

O princípio básico da proteção radiológica ocupacional (Princípio ALARA) estabelece que todas as exposições devem ser mantidas tão baixas quanto possível. As doses individuais (trabalhadores e indivíduos do público) não devem exceder os limites anuais estabelecidos pela norma (NE 3.01 - Diretrizes Básicas de Radioproteção) da Comissão Nacional de Energia Nuclear.

Os trabalhadores nessas atividades têm o direito de receber equipamentos especiais de proteção (aventais e protetores de glândulas) e monitores individuais (dosímetros) para medir a radiação no ambiente de trabalho. O direito é assegurado em convenções internacionais e pela legislação brasileira. Eles também têm direito a aposentadoria especial.

Há evidências de que qualquer exposição à radiação pode por em raisco a saúde. Isto é, não exite nível de exposição segura.

A saúde dos trabalhadores deve ser avaliada a cada 6 meses, com realização, inclusive, de hemograma completo. Os resultados desses exames devem ser guardados, pois são fundamentais para o seu acompanhamento.

A leucopenia (baixa de glóbulos brancos), a anemia e/ou a baixa de plaquetas, além de outras alterações nas células do sangue, são sinal de alarme. O trabalhador afetado deve ser afastado imediatamente da exposição.

Fonte: www.sindipetro.org.br

Radiação

Tipos de Radiação

Existem três tipos de radiação: alfa, beta e gama. Becquerel, Ernest Rutherford, da Nova Zelândia, e Marie e Pierre Curie, da França, foram os responsáveis pela sua identificação.

Quando submetemos as emissões radioativas naturais, por exemplo do polônio ou do rádio, um campo elétrico ou magnético, notamos a sua subdivisão em três tipos bem distintos. Veja a figura abaixo:

Radiação

A emissão que sofre pequeno desvio para o lado da placa negativa foi denominada emissão alfa.

A que sofre desvio maior para o lado da placa positiva foi denominada emissão beta

A que não sofre desvio foi chamada de emissão gama

Radiação Alfa

Os raios Alfa tem uma carga elétrica positiva. Consistem em dois prótons e dois nêutrons, e são idênticos aos núcleos dos átomos de hélio. Os raios alfa são emitidos com alta energia, mas perdem rapidamente essa energia quando passam através da matéria. Uma ou duas folhas de papel podem deter os raios alfa. Quando um núcleo emite uma partícula alfa, perde dois prótons e dois nêutrons. Por exemplo, a radiação alfa ocorre no U238um isótopo do urânio que tem 92 prótons e 146 nêutrons. Após a perda de uma partícula alfa, o núcleo tem 90 prótons e 144 nêutrons. O átomo com número atômico 90 não é mais o urânio, mas o tório. o isótopo formado é o 12Th234

Radiação

1- As partículas alfa são núcleos de hélio. Consistem em dois prótons e dois nêutrons que se comportam como uma partícula única.

2- O núcleo do rádio, no qual prótons e nêutrons se unem para formar uma partícula alfa.

3- A partícula alfa é emitida pelo núcleo.

Radiação Beta

Alguns núcleos radioativos emitem elétrons comuns, que tem a carga elétrica negativa. Há os que emitem pósitrons, que são elétrons positivamente carregados. As partículas beta se propagam com velocidade quase igual à da luz. Alguns podem penetrar mais de 1 cm de madeira. Quando um núcleo emite uma partícula beta, também emite um neutrino. Um neutrino não tem carga elétrica e quase não tem massa. Na radiação de partículas beta negativas, um nêutron no núcleo transforma-se em um próton, um elétron negativo e um neutrino. O elétron e o neutrino são emitidos no instante em que se formam, e o próton permanece no núcleo. Isto significa que o núcleo passa a conter mais um próton e menos um nêutron. Por exemplo, um isótopo de carbono, o 6C14, emite elétrons negativos. O C14, tem oito nêutrons e seis prótons. Quando se desintegra, um nêutron se transforma em um próton, um elétron e um neutrino. Após a emissão do elétron e do neutrino, o núcleo contém sete prótons e sete nêutrons. Seu número de massa permanece o mesmo, mas seu número atômico aumenta de um. O elemento com número atômico sete é o nitrogênio. Assim, o 6C14 transforma-se no 7N14 após a emissão de uma partícula beta negativa.

Radiação

Quando o núcleo emite um pósitron, um próton do núcleo transforma-se em um nêutron, um pósitron e um neutrino. O pósitron e o neutrino são emitidos no mesmo instante da sua formação, e o nêutron permanece no núcleo. Um isótopo de carbono, o 6C11, emite pósitrons. O C11 tem seis prótons e cinco nêutrons. Quando emite um pósitron, um próton se transforma em um nêutron, um pósitron e um neutrino. Após a emissão do pósitron e do neutrino, o núcleo contém cinco prótons e seis nêutrons. O número de massa permanece o mesmo, mas o número atômico cai de um. O elemento de número atômico cinco é o boro. Assim, o 6C11 transforma-se no 5B11 após a emissão de um pósitron e de um neutrino.

As partículas beta são elétrons em alta velocidade emitidos por certos átomos radioativos. 
Os elétrons negativos formam-se pela desintegração de um nêutron. Os elétrons positivos formam-se pela desintegração de um próton. 
A partícula beta é arremessada no instante em que se forma. Um neutrino, uma partícula quase sem peso, também é emitido.

Radiação Gama

Raios Gama Os raios gama não tem carga elétrica. São semelhantes ao raio x, mas normalmente tem um comprimento de onda mais curto. Esses raios são fótons (partículas de radiação eletromagnética) e se propagam com a velocidade da luz. São muito mais penetrantes do que as partículas alfa e beta. A radiação gama pode ocorrer de diversas maneiras. Em um processo, a partícula alfa ou beta emitida por um núcleo não transporta toda a energia disponível. Depois da emissão, o núcleo tem mais energia do que em seu estado mais estável. Ele se livra do excesso emitindo raios gama. Nenhuma transmutação se verifica pelos raios gama.

Radiação

Os raios gama são partículas, ou fótons, de energia eletromagnética.

2- Núcleo do radio.

3- Os raios gama são liberados quando um núcleo, após uma desintegração radioativa, fica num estado de alta energia.

Radiação

Fonte: br.geocities.com

Radiação

A formação de algumas substâncias essenciais ao surgimento da vida na Terra -- como os aldeídos, álcoois, ácidos e aminoácidos -- resultou da ação de radiações ultravioleta, alfa, beta e gama e de descargas elétricas sobre a atmosfera então existente.

Radiação é o processo pelo qual uma fonte emite energia que se propaga no espaço. O termo se usa também para designar a própria energia emitida. Os principais tipos de radiação energética, como o calor, a luz visível, a luz ultravioleta e os raios X e gama, se agrupam sob a denominação geral de radiação eletromagnética, frequentemente tratada como pacotes de energia -- unidades indivisíveis de energia -- chamados fótons, ou quanta. A frequências muito altas, a energia da radiação eletromagnética é equivalente a quantidades consideráveis de massa, o que torna difícil a distinção entre ondas e partículas. Grande parte da radiação emitida por elementos radioativos toma a forma de raios alfa, beta e de feixes de partículas subatômicas.

Tipos de radiação

A radiação pode ser descrita como energia em movimento a velocidades iguais ou inferiores à da luz (aproximadamente 300.000km/s). As do primeiro tipo constituem o espectro da radiação eletromagnética, caracterizada por ter massa igual a zero quando, teoricamente, se encontra em repouso. As do segundo tipo incluem partículas como elétrons, prótons e nêutrons. Em estado de repouso, essas partículas têm massa e formam os átomos e os núcleos atômicos. Quando essas formas de matéria particulada se deslocam a velocidades muito altas, são consideradas radiação.
Em resumo, as duas amplas classes de radiação se distinguem pela velocidade de propagação e pela presença ou inexistência de massa em repouso. As do primeiro tipo são chamadas radiações eletromagnéticas, enquanto que as outras são denominadas radiações corpusculares.

Acreditava-se que os raios eletromagnéticos tinham caráter ondulatório, ou seja, se propagavam no espaço e podiam sofrer o fenômeno de interferência quando originários de duas ou mais fontes. Os raios corpusculares, por sua vez, eram considerados partículas -- localizados no espaço e incapazes de sofrer interferência. No início do século XX, porém, descobriu-se que todas as formas de radiação, em determinadas condições, podem se comportar tanto como onda quanto como partícula.

Esse fenômeno é conhecido como dualidade onda-partícula e constitui uma das bases da moderna teoria quântica. O comportamento ondulatório da radiação é aparente em sua propagação através do espaço, enquanto o comportamento corpuscular é revelado pela natureza das interações da radiação com a matéria.

Radiação eletromagnética

Prevista em 1864 por James Clerk Maxwell e descoberta em 1877 por Heinrich Rudolf Hertz, a radiação eletromagnética compreende um amplo espectro de frequências, o chamado espectro eletromagnético, no qual estão incluídas as ondas de rádio, a luz visível, as radiações infravermelhas e ultravioleta e os raios X.

As ondas de rádio compreendem radiações cuja frequência varia de alguns hertz (Hz) até 109Hz, ou, em termos de comprimento de onda, de alguns quilômetros até cerca de 0,3m. O comprimento de onda c liga-se à frequência v pela relação , sendo tanto menor quanto maior for a frequência. As ondas de radiofrequência usadas em sistemas de comunicação por rádio e televisão são geradas por circuitos oscilantes e dispositivos eletrônicos.

A região das microondas compreende frequências de 109 Hz a 3 x 1011Hz e comprimentos de onda entre 0,3m a 1mm. As microondas são usadas em sistemas de radar e alguns equipamentos de comunicação. De 3 x 1011 Hz a 4 x 1014Hz estão situados os raios infravermelhos, cujos comprimentos de onda vão de 1mm até cerca de 7.800 Â. O ângstrom é a unidade usada para comprimentos de onda a partir dessa região do espectro e vale 10-8cm. A radiação infravermelha é emitida em transições atômicas e moleculares, por corpos aquecidos.

A parte visível do espectro eletromagnético vai do vermelho (frequência de 4 x 1014 a 4,8 x 1014Hz, comprimento de onda de ) até o violeta (frequência de 6,6 x 1014Hz a 7,7 x 1014Hz, comprimento de onda de ), passando pelo laranja, amarelo, verde e azul. Essa é a região do espectro capaz de sensibilizar o olho humano. O fenômeno da cor está associado à frequência da radiação. A luz é produzida por transições eletrônicas entre níveis de energia de átomos, de moléculas ou de sólidos.

Os raios ultravioleta compreendem o intervalo de frequência de 7,7 x 1014Hz a 3 x 1017Hz. Em termos de comprimento de onda, essa região se estende dos . Já os raios X cobrem a faixa dos . A partir daí começa a região dos raios gama.

Radiação corpuscular

Com velocidade de deslocamento inferior à da luz, a radiação corpuscular foi inicialmente identificada por se comportar como partícula. Apenas mais tarde comprovou-se que esses raios se comportam também como ondas. Um exemplo desse tipo de radiação é o elétron, cuja velocidade varia entre 108cm/s e a velocidade da luz. Entre outros entes comumente classificados como matéria quando se deslocam a altas velocidades estão o núcleo positivamente carregado do átomo de hidrogênio, ou próton; o núcleo do deutério, ou dêuteron, também positivamente carregado; e o núcleo do átomo de hélio, ou partículas alfa, que têm carga positiva dupla.

Efeitos da radiação sobre a matéria

As teorias atômicas elaboradas desde o final do século XIX postulam que a matéria se compõe de átomos de diferentes tipos, com uma estrutura interna comum: um núcleo central formado de prótons e nêutrons e um envoltório externo de forma variável, no qual circulam elétrons em diferentes níveis energéticos.

Quando um feixe de radiação incide sobre um átomo, transmite a ele uma parte de sua energia e induz uma desestabilização capaz de produzir três tipos de resultados: uma excitação na qual um elétron absorve a energia recebida e salta para um nível mais afastado do núcleo; uma ionização, na qual o elétron adquire energia suficiente para se soltar do átomo, que fica carregado positivamente; e uma reação nuclear, na qual a radiação incide sobre o núcleo do átomo, desencadeando processos radioativos de fissão nuclear, emissão de raios beta etc.

Pode-se inferir que alguns dos elementos que participaram da evolução do universo não estavam originalmente presentes, mas foram produzidos como resultado de bombardeamento externo de altas energias, que alguns desapareceram como consequência desse processo e que muitos compostos necessários aos processos vitais dos organismos evoluíram como consequência de irradiações de altas energias a que toda a matéria está sujeita. Por essa razão, a radiação deve ter desempenhado um papel importante na evolução do universo e é em última instância responsável não só pela existência da vida, mas também pela variedade de suas formas.

Efeitos biológicos da radiação

A ação da radiação sobre os organismos vivos pode ter efeitos benéficos ou nocivos, dependendo de sua natureza ou intensidade. A ação da luz sobre alguns componentes dos organismos produz fenômenos bastante conhecidos, como a fotossíntese, o principal mecanismo natural de produção de oxigênio. Além disso, a radiação solar governa o metabolismo e o comportamento dos animais e influencia o crescimento e a orientação espacial das plantas.

Uma excessiva exposição à radiação, até mesmo à luz visível, pode provocar, porém, graves lesões nas células e nos tecidos. Esses efeitos nocivos, derivados da ionização dos átomos, podem causar doenças e inclusive levar à morte. O poder ionizante das radiações depende da energia que elas transmitem e do período de tempo durante o qual o organismo fica exposto a elas. Os vários tipos de seres vivos podem reagir de forma diversa a uma mesma quantidade de radiação ionizante. Enquanto os mamíferos, por exemplo, podem ser mortos por uma radiação inferior a mil rads (unidade de medida de exposição à radiação), certos insetos podem suportar até cem mil rads.

Entre as radiações não-ionizantes, as ondas hertzianas (na faixa de rádio e radar) e os raios infravermelhos têm efeitos sobre o organismo semelhantes aos do calor, como queimaduras. Registraram-se também efeitos não-térmicos da exposição às microondas, usadas em sistemas de radares e de radiodifusão. Pessoas que manipulam equipamentos de rádio de alta-frequência podem ter seu sistema nervoso afetado e apresentar sintomas como cansaço, excitabilidade e insônia.

A luz é essencial para o corpo humano, por sua ação biossintética. A luz ultravioleta induz a conversão de ergosterol em vitamina D, fator essencial para o depósito de cálcio nos ossos em crescimento. Já se comprovou, entretanto, que a exposição prolongada ou repetida a essa radiação leva ao desenvolvimento do câncer de pele. A luz ultravioleta de comprimento de onda muito curto, abaixo de 2.200Â, é altamente tóxica para as células. Uma vez que a penetração da luz visível e ultravioleta nos tecidos orgânicos é pequena, apenas os efeitos sobre a pele e o aparelho visual têm consequências mais graves.

Aplicações

Os usos da radiação no diagnóstico e tratamento de doenças se multiplicaram tão rapidamente nos últimos anos que pelo menos uma forma de radiação se tornou indispensável para qualquer ramo da medicina. As muitas formas de radiação usadas incluem ondas eletromagnéticas de diversos comprimentos de onda (ondas sonoras, luz visível, radiação ultravioleta, raios X e raios gama), assim como radiações corpusculares de vários tipos (elétrons, nêutrons rápidos, prótons, partículas alfa etc.). Entre os diferentes métodos de obtenção de imagens do interior do organismo para diagnóstico de doenças estão vários sistemas de raio X, tomografia de emissão de pósitrons e ressonância magnética nuclear.

Fonte: biomania.com

Radiação

Radiações são ondas eletromagnéticas ou partículas que se propagam com uma determinada velocidade. Contêm energia, carga eléctrica e magnética. Podem ser geradas por fontes naturais ou por dispositivos construídos pelo homem. Possuem energia variável desde valores pequenos até muito elevados.

As radiações electromagnéticas mais conhecidas são: luz, microondas, ondas de rádio, radar, laser, raios X e radiação gama. As radiações sob a forma de partículas, com massa, carga eléctrica, carga magnética mais comuns são os feixes de elétrons, os feixes de prótrons, radiação beta, radiação alfa.

Tipos de Radiação

Dependendo da quantidade de energia, uma radiação pode ser descrita como não ionizante ou ionizante.

Radiações não ionizante possuem relativamente baixa energia. De fato, radiações não ionizantes estão sempre a nossa volta. Ondas eletromagnéticas como a luz, calor e ondas de rádio são formas comuns de radiações não ionizantes. Sem radiações não ionizantes, nós não poderíamos apreciar um programa de TV em nossos lares ou cozinhar em nosso forno de microondas.

Altos níveis de energia, radiações ionizantes, são originadas do núcleo de átomos, podem alterar o estado físico de um átomo e causar a perda de elétrons, tornando-os eletricamente carregados. Este processo chama-se "ionização".

Um átomo pode se tornar ionizado quando a radiação colide com um de seus elétrons. Se essa colisão ocorrer com muita violência, o elétron pode ser arrancado do átomo. Após a perda do elétron, o átomo deixa de ser neutro, pois com um elétron a menos, o número de prótons é maior. O átomo torna-se um "íon positivo".

Estabilidade do Núcleo Atômico

A tendência dos isótopos dos núcleos atômicos é atingir a estabilidade. Se um isótopo estiver numa configuração instável, com muita energia ou com muitos nêutrons, por exemplo, ele emitirá radiação para atingir um estado estável. Um átomo pode liberar energia e se estabilizar por meio de uma das seguintes formas:

* emissão de partículas do seu núcleo;

* emissão de fótons de alta frequência.

* O processo no qual um átomo espontaneamente libera energia de seu núcleo é chamado de "decaimento radioativo".

* Quando algo decai na natureza, como a morte de uma planta, ocorrem trocas de um estado complexo (a planta) para um estado simples (o solo). A idéia é a mesma para um átomo instável. Por emissão de partículas ou de energia do núcleo, um átomo instável troca, ou decai, para uma forma mais simples. Por exemplo, um isótopo radioativo de urânio, o 238, decai até se tornar chumbo 206. Chumbo 206 é um isótopo estável, com um núcleo estável. Urânio instável pode, eventualmente, se tornar um isótopo estável de chumbo.

Radiação Ionizante

Energia e partículas emitidas de núcleos instáveis são capazes de causar ionização. Quando um núcleo instável emite partículas, as partículas são, tipicamente, na forma de partículas alfa, partículas beta ou nêutrons. No caso da emissão de energia, a emissão se faz por uma forma de onda eletromagnética muito semelhante aos raios-x : os raios gama.

Radiações Ionizantes Alfa (a), Beta (ß) e Gama (?)

Radiação Alfa (a)

As partículas Alfa são constituídas por 2 prótons e 2 nêutrons, isto é, o núcleo de átomo de hélio (He). Quando o núcleo as emite, perde 2 prótons e 2 nêutrons.

Sobre as emissões alfa, foi enunciada por Soddy, em 1911, a chamada primeira lei da Radioatividade:

Quando um radionuclídeo emite uma partícula Alfa, seu número de massa diminui 4 unidades e, seu número atômico, diminui 2 unidades.

X -----> alfa(2p e 2n) + Y(sem 2p e 2n)

Ao perder 2 prótons o radionuclídeo X se transforma no radionuclídeo Y com número atômico igual a (Y = X - 2)

As partículas Alfa, por terem massa e carga elétrica relativamente maior, podem ser facilmente detidas, até mesmo por uma folha de papel (veja a figura a seguir); elas em geral não conseguem ultrapassar as camadas externas de células mortas da pele de uma pessoa, sendo assim praticamente inofensivas. Entretanto podem ocasionalmente, penetrar no organismo através de um ferimento ou por aspiração, provocando, nesse caso lesões graves. Têm baixa velocidade comparada a velocidade da luz (20 000 km/s).

Radiação Beta (ß)

As partículas Beta são elétrons emitidos pelo núcleo de um átomo instável. Em núcleos instáveis betaemissores, um nêutron pode se decompor em um próton, um elétron e um antineutrino permanece no núcleo, um elétron (partícula Beta) e um antineutrino são emitidos.

Assim, ao emitir uma partícula Beta, o núcleo tem a diminuição de um nêutron e o aumento de um próton. Desse modo, o número de massa permanece constante.

A segunda lei da radioatividade, enunciada por Soddy, Fajjans e Russel, em 1913, diz:

Quando um radionuclídeo emite uma partícula beta, seu número de massa permanece constante e seu número atômico aumenta 1 unidade X -----> beta(1e) + antineutrino + Y(com 1p a mais)

Ao ganhar 1 próton o radionuclídeo X se transforma no radionuclídeo Y com número atômico igual a (Y = X + 1)

As partículas Beta são capazes de penetrar cerca de um centímetro nos tecidos(veja a figura a seguir), ocasionando danos à pele, mas não aos órgãos internos, a não ser que sejam ingeridas ou aspiradas. Têm alta velocidade, aproximadamente 270 000 km/s.

Radiação Gama (?)

Radiação

Ao contrário das radiações Alfa e Beta, que são constituídas por partículas, a radiação gama é formada por ondas eletromagnéticas emitidas por núcleos instáveis logo em seguida à emissão de uma partícula Alfa ou Beta.

O Césio-137 ao emitir uma partícula Beta, seus núcleos se transformam em Bário-137. No entanto, pode acontecer de, mesmo com a emissão, o núcleo resultante não eliminar toda a energia de que precisaria para se estabilizar. A emissão de uma onda eletromagnética (radiação gama) ajuda um núcleo instável a se estabilizar.

É importante dizer que, das várias ondas eletromagnéticas (radiação gama, raios-X, microondas, luz visível, etc), apenas os raios gama são emitidos pelos núcleos atômicos.

As radiações Alfa, Beta e Gama possuem diferentes poderes de penetração, isto é, diferentes capacidades para atravessar os materiais.

Assim como os raios-X os raios gama são extremamente penetrantes, sendo detido somente por uma parede de concreto ou metal (veja a figura a seguir). Têm altíssima velocidade que se igual à velocidade da luz (300 000 km/s).

Raios-X

Os raios-X que não vêm do centro dos átomos, como os raios Gama. Para obter-se raios-X, uma máquina acelera elétrons e os faz colidir contra uma placa de chumbo, ou outro material. Na colisão, os elétrons perdem a energia cinética, ocorrendo uma transformação em calor (quase a totalidade) e um pouco de raios-X.

Estes raios interessantes atravessam corpos que, para a luz habitual, são opacos. O expoente de absorção deles é proporcional à densidade da substância. Por isso, com o auxílio dos raios X é possível obter uma fotografia dos órgãos internos do homem. Nestas fotografias, distinguem-se bem os ossos do esqueleto e detectam-se diferentes deformações dos tecidos brandos.

A grande capacidade de penetração dos raios X e as suas outras particularidades estão ligadas ao fato de eles terem um comprimento de onda muito pequeno.

Aplicações

A radiação ionizante tornou-se há muitos anos parte integrante da vida do homem. Sua aplicação se dá na área da medicina até às armas bélicas, contudo, sua utilidade é indiscutível. Atualmente, por exemplo a sua utilização em alguns exames de diagnóstico médico, através da aplicação controlada da radiação ionizante (a radiografia é mais comum), é uma metodologia de extremo auxílio. Porém os efeitos da radiação não podem ser considerados inócuos, a sua interação com os seres vivos pode levar a teratogenias e até a morte. Os riscos e os benefícios devem ser ponderados. A radiação é um risco e deve ser usada de acordo com os seus benefícios.

a)Saúde

Radioterapia

Consiste na utilização da radiação gama, raios X ou feixes de eléctrons para o tratamento de tumores, eliminando células cancerígenas e impedindo o seu crescimento. O tratamento consiste na aplicação programada de doses elevadas de radiação, com a finalidade de atingir as células cancerígenas, causando o menor dano possível aos tecidos sãos intermediários ou adjacentes.

Braquiterapia

Trata-se de radioterapia localizada para tipos específicos de tumores e em locais específicos do corpo humano. Para isso são utilizadas fontes radioativas emissoras de radiação gama de baixa e média energia, encapsuladas em aço inox ou em platina, com atividade da ordem das dezenas de Curies. A principal vantagem é devido à proximidade da fonte radioativa afeta mais precisamente as células cancerígenas e danifica menos os tecidos e órgãos próximos.

Aplicadores

São fontes radioativas de emissão beta distribuídas numa superfície , cuja geometria depende do objetivo do aplicador. Muito usado em aplicadores dermatológicos e oftalmológicos. O princípio de operação é a aceleração do processo de cicatrização de tecidos submetidos a cirurgias, evitando sangramentos e quelóides, de modo semelhante a uma cauterização superficial. A atividade das fontes radioativas é baixa e não oferece risco de acidente significativo sob o ponto de vista radiológico. O importante é o controle do tempo de aplicação no tratamento, a manutenção da sua integridade física e armazenamento adequado dos aplicadores.

Radioisótopos

Existem terapias medicamentosas que contêm radiosiótopos que são administrados ao paciente por meio de ingestão ou injeção, com a garantia da sua deposição preferencial em determinado órgão ou tecido do corpo humano. Por exemplo, isótopos de iodo para o tratamento do cancro na tiróide.

b)Diagnóstico

Radiografia

A radiografia é uma imagem obtida, por um feixe de raios X ou raios gama que atravessa a região de estudo e interage com uma emulsão fotográfica ou tela fluorescente. Existe uma grande variedade de tipos, tamanhos e técnicas radiográficas. As doses absorvidas de radiação dependem do tipo de radiografia. Como existe a acumulação da radiação ionizante não se devem tirar radiografias sem necessidade e, principalmente, com equipamentos fora dos padrões de operação. O risco de dano é maior para o operador, que executa rotineiramente muitas radiografias por dia. Para evitar exposição desnecessária, deve-se ficar o mais distante possível, no momento do disparo do feixe ou protegido por um biombo com blindagem de chumbo.

Tomografia

O princípio da tomografia consiste em ligar um tubo de raios X a um filme radiográfico por um braço rígido que gira ao redor de um determinado ponto, situado num plano paralelo à película. Assim, durante a rotação do braço, produz-se a translação simultânea do foco (alvo) e do filme. Obtém-se imagens de planos de cortes sucessivos, como se observássemos fatias seccionadas, por exemplo, do cérebro. Não apresenta riscos de acidente pois é operada por electricidade, e o nível de exposição à radiação é similar. Não se devem realizar exames tomográficos sem necessidade, devido à acumulação de dose de radiação.

Mamografia

Atualmente a mamografia é um instrumento que auxilia na prevenção e na redução de mortes por câncer de mama. Como o tecido da mama é difícil de ser examinado com o uso de radiação penetrante, devido às pequenas diferenças de densidade e textura de seus componentes como o tecido adiposo e fibroglandular, a mamografia possibilita somente suspeitar e não diagnosticar um tumor maligno. O diagnóstico é complementado pelo uso da biópsia e ultrasonografia. Com estas técnicas, permite-se a detecção precoce em pacientes assintomáticas e imagens de melhor definição em pacientes sintomáticas. A imagem é obtida com o uso de um feixe de raios X de baixa energia, produzidos em tubos especiais, após a mama ser comprimida entre duas placas. O risco associado à exposição à radiação é mínimo, principalmente quando comparado com o benefício obtido.

Mapeamento com radiofármacos

O uso de marcadores é comum. O marcador radioactivo tem o objetivo de, como o nome mesmo diz, marcar moléculas de substâncias que se incorporam ou são metabolizadas pelo organismo do homem, de uma planta ou animal. Por exemplo, o iodo-131 é usado para seguir o comportamento do iodo -127, estável, no percurso de uma reacção química in vitro ou no organismo. Nestes exames, a irradiação da pessoa é inevitável, mas deve-se ter em atenção para que esta seja a menor possível.

Como minimizar os efeitos da radiação ionizante

A minimização dos efeitos da radiação nos trabalhadores inicia pela avaliação de risco, o correto planejamento das atividades a serem desenvolvidas, utilização de instalações e de práticas corretas, de tal forma a diminuir a magnitude das doses individuais, o número de pessoas expostas e a probabilidade de exposições acidentais.

Os equipamentos de proteção (EPC e EPI) devem ser utilizados por todos os trabalhadores, além de ser observado a otimização desta proteção pelo elaboração e execução correta de projeto de instalações laboratoriais, na escolha adequada dos equipamentos e na execução correta dos procedimentos de trabalho.

Por outro lado o controle das doses nos trabalhadores deve considerar três fatores:

1. Tempo:

A dose recebida é proporcional ao tempo de exposição e à velocidade da dose D = t x velocidade da dose

2.Distância:

A intensidade da radiação decresce com o quadrado da distância D1/D2 = (d1/d2)2

3.Blindagem:

A espessura da blindagem depende do tipo de radiação, da atividade da fonte e da velocidade de dose aceitável após a blindagem. Para a protecção do trabalhador os comandos do equipamentos devem ter blindagem, assegurando que o técnico possa ver e manter o contacto com o paciente no decorrer do exame. As próprias salas devem ter blindagem, por forma a assegurar e garantir a segurança radiológica tanto do técnico como do pessoal circunvizinho à sala. Estas protecções devem ter espessura suficiente para garantir a proteção contra a radiação primária e a radiação difundida que pode atingir as paredes da sala.

No cálculo das blindagens leva-se em conta:

* a energia da radiação produzida;

* a quantidade de radiação produzida por determinado período (carga de trabalho);

* grau de ocupação ou frequência do ponto de interesse;

* material a ser usado como blindagem.

* Para a blindagem de raios X e Gama usa-se geralmente o chumbo. Contudo outros materiais podem ser utilizados embora a espessura necessária para se obter a mesma atenuação que com o chumbo seja muito maior.

A garantia de que as condições de trabalho é adequada do ponto de vista da proteção pode ser obtida através do levantamento radiométrico da instalação. Esta medida tem por objetivo verificar se durante a operação, a instalação apresenta níveis de segurança adequados aos trabalhadores.

Controle à Exposição

Monitorização

Este processo tem como objetivo garantir a menor exposição possível aos trabalhadores e garantir que os limites de dose não são superados.

Tipos de Monitorização

* Pessoal - procura estimar a dose recebida pelo trabalhador durante as suas atividades envolvendo radiação ionizante. As doses equivalentes são determinadas pela utilização de um ou vários dosímetros que devem ser usados na posição que forneça uma medida representativa da exposição nas partes do corpo expostos à radiação. No caso do trabalhador usar diferentes tipos de radiação então diferentes tipos de dosímetros devem ser utilizados:

* Monitorização da radiação externa;

* Monitorização da contaminação interna

* De área - Tem por objetivo a avaliação das condições de trabalho e verificar se há presença radioativa. Os resultados das medidas efetuadas com os monitores da área devem ser comparados com os limites primários ou derivados, a fim de se tomar ações para garantir a proteção necessária.

Tipos de Dosímetros

Diversos métodos ou sistemas foram desenvolvidos a fim de possibilitar a determinação da dose de radiação. O objetivo é o de quantificar a energia absorvida, a fim de proporcionar um conhecimento mais profundo dos efeitos da radiação ionizante sobre a matéria.

Radiação
Figura - Exemplos de dosímetros

Os requisitos são:

* a resposta do dosímetro deve ser linear com a dose absorvida;

* o aparelho deve ser de alta sensibilidade, por forma a medir doses baixas;

* deve apresentar amplo intervalo de resposta;

* a resposta deve ser independente da velocidade da dose;

*deve possuir estabilidade da resposta ao longo do tempo;

*De uma forma geral podemos classificar os dosímetros em: de leitura direta e de leitura indireta, os primeiros fornecem ao utilizador a dose ou velocidade da dose em qual quer instante, os segundos necessitam de um procedimento para a sua leitura.

Para finalizar devemos lembrar de alguns requisitos que compõem os procedimentos de segurança:

* delimitação de zonas e áreas (controladas e de vigilância),

* selagem

* limitar o acesso

* utilizar equipamentos de proteção individual

* proibir a comida e a bebida, o fumar, mascar chicletes, manusear lentes de contato, a aplicação de cosméticos e ou produtos de higiene pessoal ou armazenar alimentos para consumo nos locais de uso de radiação e áreas adjacentes.

* lavar as mãos:

- antes e após a manuseio de materiais radioativos, após a remoção das luvas e antes de saírem do laboratório.

- antes e após o uso de luvas.

- antes e depois do contato físico com pacientes.

- antes de comer, beber, manusear alimentos e fumar.

- depois de usar o toalete, coçar o nariz, cobrir a boca para espirrar, pentear os cabelos.

- mãos e antebraços devem ser lavados cuidadosamente (o uso de escovas deverá ser feito com atenção).

-manter líquidos anti-sépticos para uso, caso não exista lavatório no local.

- evitar o uso de calçados que deixem os artelhos à vista.

- não usar anéis, pulseiras, relógios e cordões longos, durante as atividades laboratoriais.

- não colocar objetos na boca.

- não utilizar a pia do laboratório como lavatório.

- usar roupa de proteção durante o trabalho. Essas peças de vestuário não devem ser usadas em outros espaços que não sejam do laboratório (escritório, biblioteca, salas de estar e refeitório).

- afixar o símbolo internacional de "Radioatividade" na entrada do laboratório. Neste alerta deve constar o nome e número do telefone do pesquisador responsável.

- presença de kits de primeiros socorros, na área de apoio ao laboratório.

- o responsável pelo laboratório precisa assegurar a capacitação da equipe em relação às medidas de segurança e emergência

-providenciar o exame médico periódicos;

-adoção de cuidados após a exposição à radiação.

Fonte: www.fiocruz.br

Radiação

Radiação e Radioatividade

Tipos de radiação

Na natureza, existem 92 elementos. Cada elemento pode ter quantidades diferentes de nêutrons. Os núcleos com mesmo número de prótons, mas que diferem no número de nêutrons, são denominados isótopos de um mesmo elemento. Para determinadas combinações de nêutrons e prótons, o núcleo é estável – nesse caso, são denominados isótopos estáveis. Para outras combinações, o núcleo é instável (isótopos radioativos ou radioisótopos) e emitirá energia na forma de ondas eletromagnéticas ou de partículas, até atingir a estabilidade.

Dá-se o nome genérico de radiação nuclear à energia emitida pelo núcleo. As principais formas de radiação são:
i) emissão de nêutrons;
ii) radiações gama, ou seja, radiação eletromagnética, da mesma natureza que a luz visível, as microondas ou os raios X, porém mais energética;
iii) radiação alfa (núcleos de hélio, formados por dois prótons e dois nêutrons);
iv) radiação beta (elétrons ou suas antipartículas, os pósitrons, cuja carga elétrica é positiva).

Nas ciências nucleares, a unidade de energia geralmente utilizada é o elétron-volt (eV). As energias emitidas pelo núcleo são acima de 10 mil eV, valor que é cerca de bilhões de vezes menor que o das energias com que lidamos no dia-a-dia. Uma bomba como a de Hiroshima contém apenas 20 kg de matéria-prima, aproximadamente.

A liberação de energia do núcleo se dá através de dois processos principais: decaimento radioativo (também chamado desintegração) e fissão.

Radioatividade Natural

Os danos que a radioatividade pode causar à saúde humana justificam as rigorosas normas de segurança adotadas nas atividades que usam a energia nuclear. Mas muitas pessoas podem estar sendo expostas, sem saber, a níveis elevados de radiação, por causa do acúmulo de elementos radioativos em resíduos de processos industriais.

Inúmeros países, inclusive o Brasil, realizam estudos sobre esse problema, visando reduzir ou eliminar os aumentos da radioatividade natural causados pelas tecnologias criadas pelo homem.

Tecnologia humana aumenta o risco de exposição

Toda a matéria existente no universo é constituída por átomos, que resultam de diferentes arranjos entre prótons, nêutrons e elétrons. Em função desses arranjos, os átomos adquirem propriedades físico-químicas bem definidas, que permitem identificar cada um deles como um elemento químico. No entanto, o mesmo elemento pode ocorrer em diferentes formas, denominadas isótopos, com comportamento químico idêntico. Isótopos de um mesmo elemento têm igual número de prótons, mas diferem no número de nêutrons, o que resulta em átomos mais ou menos instáveis.

A instabilidade dos átomos está associada a um excesso de energia acumulada, que tende a ser liberada sob a forma de radiações. Nesse processo denominado decaimento, o átomo livra-se do excesso de energia e torna-se mais estável. A radiação emitida pode ser pura energia eletromagnética ou conter ainda partículas saídas do núcleo do átomo. Quando há liberação de partículas, as propriedades químicas do átomo são alteradas e o elemento transforma-se em outro (figuras 1 e 2).

Os átomos que decaem, emitindo radiação, são conhecidos como radioativos.. Essa radiação (com ou sem partículas) é chamada de “nuclear” por se originar do núcleo do átomo, e os dois tipos têm em comum a capacidade de interagir com a matéria à sua volta, alterando sua estrutura. Células vivas expostas a essa radiação, por exemplo, podem ser destruídas ou alteradas, em geral levando a doenças.

A radioatividade é, assim, um processo natural, através do qual átomos instáveis evoluem em busca de configurações mais estáveis. O processo leva à transmutação de elementos químicos e à liberação de energia nuclear. Descoberto no final do século passado, o fenômeno foi desvendado e dominado pelos cientistas, e sua utilização disseminou-se, seja para benefício do homem (na medicina, por exemplo), seja com fins maléficos (caso das bombas nucleares). Desde sua descoberta, a radioatividade vem sendo associada ao aumento do câncer nas populações expostas tanto a fontes naturais quanto a fontes artificiais usadas de modo inadequado, ou em acidentes como a explosão do reator nuclear de Tchernobyl, na Rússia (1986), ou a abertura de uma cápsula de césio radioativo (137Cs) de uso medicinal em Goiânia (1987).

A proteção contra as radiações

A radioatividade pode ser nociva ao organismo humano, dependendo da intensidade ou da duração da exposição. Esse perigo já é bem conhecido, e os livros, a televisão e o cinema ajudaram a divulgá-lo. Mas o fenômeno também pode trazer importantes benefícios. Entre as aplicações pacíficas da energia nuclear estão, hoje, várias práticas médicas (como o tratamento do câncer e o diagnóstico de doenças) e pesquisas científicas (na bioquímica, na agricultura, na ecologia), além da produção de energia elétrica, a mais conhecida.

Em função dos riscos ligados à radioatividade, as atividades que envolvem o uso da energia nuclear são regulamentadas pela Comissão Internacional de Radioproteção (ICRP, na sigla em inglês), uma instituição científica independente. A ICRP estabeleceu em 1977 três novos princípios básicos, que devem ser obedecidos por todas as empresas ou instituições (públicas ou privadas), para garantir o desenvolvimento seguro dessas atividades, e desde então vem realizando estudos e fazendo recomendações para atividades específicas.

O primeiro desses princípios é a justificativa da prática. Nenhuma atividade que envolva exposições à radiação deve ser realizada, a menos que gere benefícios, aos indivíduos expostos ou à sociedade, que compensem os riscos associados à radiação. O segundo, a otimização, determina que, para qualquer fonte de radiação usada em uma atividade, a magnitude das doses individuais, o número de pessoas expostas e mesmo a eventualidade da ocorrência de exposições (quando não há certeza se isso acontecerá) devem ser mantidos no mais baixo nível razoavelmente aceitável, levando-se em conta os fatores sociais e econômicos. O terceiro princípio, a limitação de dose, diz que a exposição de indivíduos (em todas as práticas relevantes de uma atividade) deve obedecer a limites de dose ou a algum tipo de controle de risco, para assegurar que ninguém seja exposto a riscos considerados inaceitáveis.

Em conjunto, esses princípios significam que é aceitável desenvolver atividades que envolvem o uso da energia nuclear, desde que isso represente um benefício para o ser humano, sem que este incorra em riscos que possam ser evitados.

Os três princípios básicos acima constituem a base de atuação do Instituto de Radioproteção e Dosimetria (IRD), vinculado à Comissão Nacional de Energia Nuclear (CNEN), órgão federal encarregado de regulamentar, normatizar e fiscalizar todas as práticas envolvendo o uso da energia nuclear no país. A finalidade do IRD, como órgão de referência na proteção contra os efeitos nocivos da radioatividade, é realizar pesquisas na área da radioproteção e dosimetria (medidas de doses radiológicas), além de apoiar técnica e cientificamente a CNEN nos processos regulatórios e de controle de práticas que impliquem o uso da radiação ionizante.

Um risco ampliado pelo homem

Os seres humanos também podem estar expostos à radioatividade em situações que não envolvem o uso da energia nuclear, e que por isso não estariam sujeitas aos princípios de controle e limitação de dose. São fontes de radiação os isótopos naturais de diversos elementos químicos, presentes no solo, no ar e mesmo em seres vivos (até no organismo humano). Em geral, a exposição a essas fontes não alcança níveis perigosos, mas certas atividades tecnológicas podem aumentar os riscos. Essa possibilidade vem sendo investigada há algum tempo.

A influência do homem sobre os níveis de exposição à radioatividade natural começou quando os ancestrais da espécie escolheram viver em cavernas e ampliou-se quando passaram a minerar e trabalhar metais e bens minerais. No primeiro caso, ao cobrir as entradas de cavernas com peles de animais, o homem primitivo reduziu a renovação do ar nesses ambientes, o que aumentou os níveis internos de radônio. Isso porque esse gás radioativo, produzido durante o decaimento do isótopo 238 de urânio (238U), é capaz de emanar das rochas onde é gerado.

Tal situação é semelhante à vivida por mineiros que trabalham em galerias subterrâneas: o urânio, sempre presente nas rochas (em níveis apreciáveis em alguns casos), constitui uma fonte permanente de radônio, que emana e se acumula dentro das galerias. Caso não exista um sistema de ventilação eficiente, os trabalhadores podem ficar sujeitos a níveis de exposição superiores aos recomendados pela ICRP. É significativa, o que reforça essa possibilidade, a associação entre os teores de radônio em minas subterrâneas e o número de casos de câncer em mineiros.

As indústrias do ciclo do combustível nuclear, incluindo lavra e beneficiamento de minério de urânio, enriquecimento desse elemento, reatores nucleares e plantas de reprocessamento são submetidas, no Brasil e no exterior, a um severo processo de licenciamento e controle. Isso as coloca, sem dúvida, entre as atividades industriais mais rigorosamente controladas. Vários avanços na área de segurança ocorridos no setor nuclear foram depois adotados pelo setor produtivo convencional (não nuclear). A percepção da opinião pública (às vezes equivocada) quanto aos riscos da energia nuclear certamente contribuiu para esse rigor no controle das instalações nucleares.

Agora, um tema que vem despertando muito interesse científico e social é a real possibilidade de ocorrência de exposições à radiação em função de atividades não-nucleares. De fato, materiais usados por diferentes tipos de indústrias não-nucleares (como matérias-primas e componentes de produtos, ou descartados nos processos produtivos) apresentam elevada radioatividade natural. Tais materiais são conhecidos internacionalmente pela sigla NORM (de naturally occurring radioactive materials, ou seja, materiais em que a radioatividade ocorre naturalmente). Os processos industriais a que tais materiais são submetidos podem aumentar a concentração de elementos radioativos (e, portanto, os níveis de radiação emitida) e a exposição de trabalhadores e indivíduos do público à radioatividade.

As pesquisas a respeito dos impactos radioativos associados às indústrias não-nucleares baseiam-se na hipótese de que, não sendo conhecidos os riscos a que os trabalhadores e a população estariam sujeitos em função dessas atividades, pode estar ocorrendo exposição inconsciente e indevida à radiação. Em resposta a essa possibilidade, órgãos governamentais e empresas públicas e privadas, em diversos países (desenvolvidos ou em desenvolvimento), vêm investindo em estudos científicos para definir a extensão do problema.

Esses estudos abrem a possibilidade real de adoção de normas sobre o uso industrial de materiais e processos com risco potencial de impacto radiológico e sobre a necessária recuperação de áreas ambientais afetadas por tais atividades. Também servem para alertar as empresas que utilizam tais materiais e processos, levando-as a buscar a tecnologia adequada para eliminar ou controlar esse impacto.

Problema potencial em vários setores

Um exemplo que abrange muitos setores industriais, em especial a siderurgia, é a queima do carvão mineral, que contém elementos radioativos como urânio e tório. Estima-se que, em todo o mundo, sejam queimadas por ano 2,8 bilhões de toneladas de carvão, liberando 9 mil toneladas de tório e 3,6 mil de urânio para o meio ambiente, nas partículas presentes na fumaça e nas cinzas descartadas. Com a queima, são multiplicadas as concentrações (nas cinzas) de elementos radioativos gerados pelo decaimento natural dos isótopos 238 de urânio (238U) e 232 de tório (232Th). Elementos voláteis como o radônio e o isótopo 210 de chumbo (210Pb) tendem a ser liberados na atmosfera.

Uma avaliação do impacto radiológico resultante da queima do carvão para gerar energia elétrica vem sendo realizada, no Reino Unido, pelo National Radiological Protection Board (NRPB), considerando várias vias de exposição: liberação de cinzas e radônio para atmosfera, descarte de cinzas, uso desse material como subproduto industrial e outras. Resultados preliminares indicam que as exposições mais elevadas resultam do emprego das cinzas na construção civil e que a liberação na atmosfera contamina a vegetação local.

A ocorrência de elementos radioativos naturais no petróleo e no gás natural também pode aumentar a exposição à radiação. Quando o óleo é extraído do subsolo, vem acompanhado de sólidos e de água. Sob certas condições, sais de bário e cálcio (sulfatos e carbonatos) sofrem precipitação, carregando com eles os isótopos 226 e 228 do rádio, ambos radioativos. Com o tempo, esses precipitados entopem os dutos, devendo ser removidos e depositados de modo seguro, para evitar exposições à radioatividade. O problema foi observado em plataformas marítimas de petróleo do Mar do Norte, na Europa, em 1981 (e estima-se que existam, em todo o mundo, cerca de 6 mil plataformas desse tipo). Até hoje, porém, as avaliações realizadas mostram que os trabalhadores sofreram baixos níveis de exposição e que o problema se concentra na emissão de efluentes para o mar.

A descarga no mar dessas e de outras águas de processos, contendo elevadas concentrações de elementos radioativos, pode fazer com que esses elementos se acumulem na cadeia alimentar marinha, até atingir altas concentrações no topo dessa cadeia (nos peixes). O consumo desses peixes (e outros animais) contaminados pode aumentar a exposição de seres humanos à radioatividade.

Entre as indústrias em que os problemas de exposição à radiação podem ser mais significativos destacam-se as do ciclo de lavra e beneficiamento de minerais. Isso porque alguns minerais, ao se formarem, incorporaram urânio e tório em proporções superiores à média da crosta terrestre. A extração e o processamento industrial alteram as condições físico-químicas que esses materiais apresentam na natureza, o que pode levar ao lançamento de parcelas significativas dos elementos radioativos no meio ambiente. Um exemplo é a drenagem ácida: a pirita (FeS2) presente nas rochas é oxidada quando exposta ao oxigênio e à água, resultando na produção de ácido sulfúrico (H2SO4). Esse ácido tem a capacidade de lixiviar (remover) da rocha grandes quantidades de metais (radioativos ou não), que podem contaminar águas superficiais (rios, lagos e estuários) e subterrâneas.

Mesmo que isso não aconteça, o próprio processamento de um minério pode concentrar ou mobilizar os elementos radioativos. O aumento da radioatividade natural em resíduos sólidos da mineração, efluentes líquidos e emissões gasosas, e também em produtos e subprodutos que venham a ser usados por outros setores industriais, pode resultar em maior exposição de trabalhadores e da população em geral.

O problema pode ocorrer em muitas indústrias de mineração, em especial as de carvão, nióbio, ouro, ferro, minerais pesados (como zircônio e terras raras). Também merece destaque a indústria de fosfato: na produção do ácido fosfórico (H3PO4) são obtidas grandes quantidades de fosfogesso, subproduto constituído basicamente por sulfato de cálcio (CaSO4). Dependendo das concentrações de urânio e tório na rocha fosfática, o fosfogesso pode apresentar grandes quantidades dos isótopos 226 e 228 de rádio. Apesar do risco, esse subproduto é geralmente armazenado em pilhas, nas proximidades das fábricas, e em alguns casos é despejado em cursos d.água. O problema é maior ainda porque o fosfogesso, como as cinzas do carvão, pode ser usado na construção civil e na agricultura (como fertilizante).

Quatro anos de estudos no Brasil

A preocupação com os riscos do aumento da exposição à radioatividade natural também está presente no Brasil. Por determinação da CNEN, o IRD vem coordenando um programa de pesquisa bastante amplo para avaliar a extensão do problema no país (em especial no setor mineral), definir linhas de investigação prioritárias e propor estratégias de atuação em função dos resultados obtidos. Em um sentido mais amplo, esses resultados, além de garantir proteção aos trabalhadores dos setores envolvidos e à população, contribuem para que o setor industrial não seja surpreendido pela adoção eventual de medidas de controle internas ou mesmo externas, como barreiras alfandegárias decorrentes da globalização da economia.

O programa de pesquisa, iniciado em 1996, inclui a avaliação de eventuais impactos da liberação de efluentes líquidos e gasosos por diferentes tipos de indústrias de mineração e dos riscos decorrentes de uma futura ocupação humana em áreas de influência de bacias de rejeitos e do uso de seus produtos e subprodutos por outras indústrias. Também é avaliada a exposição de operários nos locais de trabalho, incluindo determinação de elementos radioativos no organismo (em amostras de urina e fezes) e em aerossóis (partículas suspensas no ar), e do radônio acumulado nos locais de trabalho. Estuda-se ainda a viabilidade da alteração das rotas de processo e da recuperação econômica de resíduos, visando reduzir impactos ambientais.

Para estudar as implicações ambientais dessas atividades foi desenvolvida uma metodologia de trabalho que começa na análise detalhada do processo operacional da indústria. Todo o seu modo de operação é examinado, desde os balanços de massa até os sistemas de tratamento e disposição de rejeitos. A seguir, a presença de elementos radioativos e nãoradioativos é identificada em amostras colhidas ao longo do circuito operacional. Com esses resultados é feito o balanço de massa, que permite conhecer quanta radioatividade entra no processo industrial e em que volume e de que forma ela sai (se em produtos, rejeitos sólidos, efluentes líquidos ou gases).

Mas não basta medir as quantidades envolvidas no processo. É preciso saber que forma química têm os contaminantes potenciais: se estão facilmente disponíveis ou são mais resistentes aos processos físico-químicos atuantes no ambiente. A etapa seguinte é estimar, através de modelos matemáticos que simulam cenários possíveis, a concentração de poluentes nos compartimentos ambientais: águas de superfície, águas subterrâneas, sedimentos, peixes, vegetais potencialmente consumidos pelo homem, carne e leite. Tais dados, associados às taxas de consumo dos diferentes itens, permitem estimar a exposição humana à radioatividade.

Em função das exposições estimadas calculam se os riscos radiológicos à saúde humana. Os valores obtidos indicam a necessidade ou não de medidas de correção ou controle da disposição de rejeitos, emissão de efluentes e gases ou reaproveitamento de materiais. Essa metodologia também pode ser aplicada em situações onde outros poluentes (não radioativos) estão envolvidos no diagnóstico de impacto ambiental.

O processo operacional de uma indústria de lavra e beneficiamento de nióbio no Brasil (figura 3) permite exemplificar esse trabalho. As análises das amostras coletadas em cada etapa do processo evidenciaram o aumento da concentração de elementos radioativos nos resíduos da lixiviação (figura 4) e na escória (figura 5). Do ponto de vista gerencial, tais rejeitos devem ser separados dos demais e os locais onde serão depositados devem ser isolados de forma a evitar que qualquer pessoa (trabalhadores ou não) seja exposta à radioatividade. Um dado interessante é a concentração de urânio, em torno de 1.500ppm (partes por milhão), no material de lixívia, o que pode viabilizar seu aproveitamento como insumo para a produção de concentrado de urânio, a ser usado na geração de energia nucleoelétrica.

No caso dos efluentes liberados para o ambiente, o cálculo das doses revela que os impactos para os cursos d.água são irrelevantes. No entanto, as concentrações dos isótopos 226 e 228 de rádio nas águas subterrâneas afetadas pelas bacias de rejeito onde são despejados os resíduos da lixiviação não permitem a liberação dessas águas para o meio ambiente sem algum tipo de tratamento (figura 6). Assim, as práticas adotadas pela empresa bombeamento contínuo da água dessas bacias e seu tratamento com sulfato de cálcio (CaSO4) não deve ser interrompido.

Já em uma mineração de carvão investigada, o problema principal está no alto teor de urânio medido nas drenagens ácidas. A detecção de valores de radioatividade em torno de 100 becquerels por litro (Bq/l) nas águas resultantes dessas drenagens impede seu lançamento no ambiente sem qualquer tratamento, pois poderão expor a população a doses acima dos limites recomendados pela ICRP.

Cabe destacar ainda dois trabalhos de pesquisadores do IRD sobre o emprego do fosfogesso: como material de construção e como fertilizante agrícola. O primeiro demonstrou que a inalação do isótopo 220 do radônio e de seus descendentes de vida curta emanados das paredes de um cômodo em cuja construção o fosfogesso tenha sido usado como componente da argamassa (e ainda com baixa ventilação e sem proteção - tinta - nas paredes) exporia um morador a até 80% do valor de dose total. Esse estudo concluiu que, para os cenários de uso considerados, os valores de dose não seriam significativos, mas mostrou que a presença desse isótopo no fosfogesso pode ser um fator limitante para seu emprego na construção civil. O segundo estudo indicou que os valores de dose individual resultantes da ingestão de produtos cultivados com o fosfogesso como fertilizante não representam um aumento de risco que impeça esse uso, mesmo no caso de aplicações sucessivas durante 100 anos.

O futuro da radioproteção

O aumento da radioatividade ambiental provocado por atividades humanas é um tema sujeito a intensa investigação. Atividades antes insuspeitas podem ser vistas hoje como fontes potenciais de exposição. Por isso, vários trabalhos científicos têm sido publicados sobre esse assunto e vêm sendo desenvolvidas tecnologias de medida de radiação. Também estão sendo estudadas regulamentações para restringir os riscos associados a essas exposições. Todos esses aspectos, porém, ainda são debatidos intensamente na comunidade científica internacional.

Para ampliar a discussão dessa questão no país, o IRD e a Sociedade Brasileira de Biociências Nucleares (SBBN) realizaram no Rio de Janeiro, em setembro do ano passado, o 2º Technological Enhanced Natural Radiation Symposium (Simpósio sobre Radiação Natural Tecnologicamente Intensificada). Foram abordados, no encontro, aspectos relacionados ao monitoramento desses materiais, às técnicas de medida, à avaliação das exposições de indivíduos do público e trabalhadores, à experiência dos setores industriais, à recuperação de áreas contaminadas e à legislação sobre o problema.

Fonte: www.biodieselbr.com

Radiação

A transmissão de energia através do espaço é chamada radiação. Este processo de transmissão do calor não depende da presença de um meio material, podendo ocorrer através do vácuo. A energia solar, por exemplo, chega até nós dessa forma.

A energia transmitida deste modo é denominada energia radiante e apresenta-se na forma de ondas eletromagnéticas, assim como as ondas de rádio, as microondas, a luz visível, a radiação ultravioleta (UV), os raios X e os raios gama. Essas formas de energia radiante estão classificadas por ordem de comprimento de onda (ou de frequência) constituindo o espectro eletromagnético.

A transferência de calor por radiação geralmente envolve a faixa do espectro conhecida por infravermelho (IV). Qualquer objeto libera energia radiante. Objetos a uma maior temperatura liberam mais energia radiante que objetos a uma menor temperatura.

As qualidades físicas de um objeto determinam a capacidade do mesmo absorver ou refletir radiação. Via de regra, superfícies rugosas e, ou, opacas são bons absorvedores de calor radiante, sendo portanto, facilmente aquecidos por radiação. Superfícies lisas e polidas são usualmente bons refletores de modo que não permanecem eficientemente aquecidas. Objetos que são bons absorvedores, frequentemente são bons emissores. Objetos que são bons refletores, frequentemente são pobres emissores. Da mesma forma objetos de cor escura absorvem melhor a energia radiante do que objetos de cor clara.

Fonte: penta3.ufrgs.br

Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal