Breaking News
QUESTION 1 You have a hybrid Exchange Server 2016 organization. Some of the mailboxes in the research department are hosted on-premises. Other mailboxes in the research department are stored in Microsoft Office 365. You need to search the mailboxes in the research department for email messages that contain a specific keyword in the message body. What should you do? A. From the Exchange Online Exchange admin center, search the delivery reports. B. Form the on-premises Exchange center, search the delivery reports. C. From the Exchange Online Exchange admin SY0-401 exam center, create a new In-Place eDiscovery & Hold. D. From the Office 365 Compliance Center, create a new Compliance Search. E. From the on-premises Exchange admin center, create a new In-Place eDiscovery & Hold. Correct Answer: E QUESTION 2 You have an Exchange Server 2016 organization. You plan to enable Federated Sharing. You need to create a DNS record to store the Application Identifier (AppID) of the domain for the federated trust. Which type of record should you create? A. A B. CNAME C. SRV D. TXT Correct Answer: D QUESTION 3 Your company has an Exchange Server 2016 200-310 exam Organization. The organization has a four- node database availability group (DAG) that spans two data centers. Each data center is configured as a separate Active Directory site. The data centers connect to each other by using a high-speed WAN link. Each data center connects directly to the Internet and has a scoped Send connector configured. The company's public DNS zone contains one MX record. You need to ensure that if an Internet link becomes unavailable in one data center, email messages destined to external recipients can 400-101 exam be routed through the other data center. What should you do? A. Create an MX record in the internal DNS zone B. B. Clear the Scoped Send Connector check box C. Create a Receive connector in each data center. D. Clear the Proxy through Client Access server check box Correct Answer: AQUESTION 4 Your network contains a single Active Directory forest. The forest contains two sites named Site1 and Site2. You have an Exchange Server 2016 organization. The organization contains two servers in each site. You have a database availability group (DAG) that spans both sites. The file share witness is in Site1. If a power failure occurs at Site1, you plan to mount the databases in Site2. When the power is restored in Site1, you Cisco CCNP Security 300-207 exam SITCS need to prevent the databases from mounting in Site1. What should you do? A. Disable AutoReseed for the DAG. B. Implement an alternate file share witness. C. Configure Datacenter Activation Coordination (DAC) mode. D. Force a rediscovery of the EX200 exam network when the power is restored. Correct Answer: C QUESTION 5 A new company has the following: Two offices that connect to each other by using a low-latency WAN link In each office, a data center that is configured as a separate subnet Five hundred users in each office You plan to deploy Exchange Server 2016 to the network. You need to recommend which Active Directory deployment to use to support the Exchange Server 2016 deployment What is the best recommendation to achieve the goal? A. Deploy two forests that each contains one site and one site link. Deploy two domain controllers to each forest. In each forest configure one domain controller as a global catalog server B. Deploy one forest that contains one site and one site link. Deploy four domain controllers. Configure all of the domain controllers as global catalog servers. C. Deploy one forest that contains two sites and two site links. Deploy two domain controllers to each site in each site, configure one domain controller as a global catalog server D. Deploy one forest that contains two sites and one site link. Deploy two domain controllers to each site. Configure both domain controllers as global catalog servers Correct Answer: C QUESTION 6 How is the IBM Content Template Catalog delivered for installation? A. as an EXE file B. as a ZIP file of XML files C. as a Web Appli cati on Archive file D. as a Portal Application Archive file Correct Answer: D QUESTION 7 Your company has a data center. The data center contains a server that has Exchange Server 2016 and the Mailbox server role installed. Outlook 300-101 exam anywhere clients connect to the Mailbox server by using thename outlook.contoso.com. The company plans to open a second data center and to provision a database availability group (DAG) that spans both data centers. You need to ensure that Outlook Anywhere clients can connect if one of the data centers becomes unavailable. What should you add to DNS? A. one A record B. two TXT records C. two SRV records D. one MX record Correct Answer: A QUESTION 8 You have an Exchange Server 2016 EX300 exam organization. The organization contains a database availability group (DAG). You need to identify the number of transaction logs that are in replay queue. Which cmdlet should you use? A. Test-ServiceHealth B. Test-ReplicationHealth C. Get-DatabaseAvailabilityGroup D. Get-MailboxDatabaseCopyStatus Correct Answer: D QUESTION 9 All users access their email by using Microsoft Outlook 2013 From Performance Monitor, you discover that the MSExchange Database\I/O Database Reads Average Latency counter displays values that are higher than normal You need to identify the impact of the high counter values on user connections in the Exchange Server organization. What are two client connections 400-051 exam that will meet performance? A. Outlook on the web B. IMAP4 clients C. mobile devices using Exchange ActiveSync D. Outlook in Cached Exchange ModeE. Outlook in Online Mode Correct Answer: CE QUESTION 10 You work for a company named Litware, Inc. that hosts all email in Exchange Online. A user named User1 sends an email message to an Pass CISCO 300-115 exam - test questions external user User 1 discovers that the email message is delayed for two hours before being delivered. The external user sends you the message header of the delayed message You need to identify which host in the message path is responsible for the delivery delay. What should you do? A. Review the contents of the protocol logs. B. Search the message tracking logs. C. Search the delivery reports 200-355 exam for the message D. Review the contents of the application log E. Input the message header to the Exchange Remote Connectivity Analyzer Correct Answer: E QUESTION 11 You have an Exchange Server 2016 organization. The organization contains three Mailbox servers. The servers are configured as shown in the following table You have distribution group named Group1. Group1 contains three members. The members are configured as shown in the following table. You discover that when User1 sends email messages to Group1, all of the messages are delivered to EX02 first. You need to identify why the email messages sent to Group1 are sent to EX02 instead. What should you identify? A. EX02 is configured as an expansion server. B. The arbitration mailbox is hosted 300-320 exam on EX02.C. Site2 has universal group membership caching enabled. D. Site2 is configured as a hub site. Correct Answer: A
Home / Matemática / Frações Decimais

Frações Decimais

O papel das frações e números Decimais

PUBLICIDADE

Esta página trata do estudo de frações e números decimais, bem como seus fatos históricos, propriedades, operações e aplicações. As frações decimais e números decimais possuem notória importância cotidiana. Tais conceitos são usados em muitas situações práticas, embora, muitas vezes passem despercebidas.

Indo ao supermercado comprar 1/2 Kg de café por R$ 2,80 e pagando a compra com uma nota de R$ 5,00, obtém-se R$ 2,20 de troco. Neste exemplo, podemos observar o uso de frações e números decimais. Através deste tipo de compra, usamos o conceito de fração decimal juntamente com o sistema de pesagem (1/2 Kg), números decimais juntamente com o sistema monetário. Muitas outras situações utilizam de frações e números decimais.

Observação: Para dividir um número X por outro número não nulo Y, usaremos frequentemente a notação X/Y, por ser mais simples.

Elementos históricos sobre os números Decimais

Hoje em dia é comum o uso de frações. Houve tempo, porém que as mesmas não eram conhecidas. O homem introduziu o uso de frações quando começou a medir e representar medidas.

Os egípcios usavam apenas frações que possuiam o número 1 dividido por um número inteiro, como por exemplo: 1/2, 1/3, 1/4, 1/5,… Tais frações eram denominadas frações egípcias e ainda hoje têm muitas aplicações práticas. Outras frações foram descobertas pelos mesmos egípcios as quais eram expressas em termos de frações egípcias, como: 5/6=1/2+1/3.

Os babilônios usavam em geral frações com denominador 60. É provável que o uso do número 60 pelos babilônios se deve ao fato que é um número menor do que 100 com maior quantidade de divisores inteiros. Os romanos, por sua vez, usavam constantemente frações com denominador 12. Provavelmente os romanos usavam o número 12 por ser um número que embora pequeno, possui um número expressivo de divisores inteiros. Com o passar dos tempos, muitas notações foram usadas para representar frações. A atual maneira de representação data do século XVI.

Os números decimais têm origem nas frações decimais. Por exemplo, a fração 1/2 equivale à fração 5/10 que equivale ao número decimal 0,5.

Stevin (engenheiro e matemático holandês), em 1585 ensinou um método para efetuar todas as operações por meio de inteiros, sem o uso de frações, no qual escrevia os números naturais ordenados em cima de cada algarismo do numerador indicando a posição ocupada pela vírgula no numeral decimal. A notação abaixo foi introduzida por Stevin e adaptada por John Napier, grande matemático escocês.

1437 1 2 3

 = 1, 4 3 7
1000

A representação dos algarismos decimais, provenientes de frações decimais, recebia um traço no numerador indicando o número de zeros existentes no denominador.

437


100

= 4,37

Este método foi aprimorado e em 1617 Napier propôs o uso de um ponto ou de uma vírgula para separar a parte inteira da parte decimal.

Por muito tempo os números decimais foram empregados apenas para cálculos astronômicos em virtude da precisão proporcionada. Os números decimais simplificaram muito os cálculos e passaram a ser usados com mais ênfase após a criação do sistema métrico decimal.

Frações e Números Decimais

Dentre todas as frações, existe um tipo especial cujo denominador é uma potência de 10. Este tipo é denominado fração decimal.

Exemplos de frações decimais, são:

1/10, 3/100, 23/100, 1/1000, 1/103

Toda fração decimal pode ser representada por um número decimal, isto é, um número que tem uma parte inteira e uma parte decimal, separados por uma vírgula.

A fração 127/100 pode ser escrita na forma mais simples, como:

127


100

= 1,27

onde 1 representa a parte inteira e 27 representa a parte decimal. Esta notação subentende que a fração 127/100 pode ser decomposta na seguinte forma:

127


100

= 100+27


100

= 100


100

+ 27


100

= 1+0,27 = 1,27

A fração 8/10 pode ser escrita na forma 0,8, onde 0 é a parte inteira e 8 é a parte decimal. Aqui observamos que este número decimal é menor do que 1 porque o numerador é menor do que o denominador da fração.

Leitura de números decimais

Para ler números decimais é necessário primeiramente, observar a localização da vírgula que separa a parte inteira da parte decimal.

Um número decimal pode ser colocado na forma genérica:

Centenas Dezenas Unidades  , Décimos Centésimos Milésimos

Por exemplo, o número 130,824, pode ser escrito na forma:

1 Centena 3 dezenas 0 unidades  , 8 décimos 2 centésimos 4 milésimos

Exemplos:

0,6 Seis décimos
0,37 Trinta e sete centésimos
0,189 Cento e oitenta e nove milésimos
3,7 Três inteiros e sete décimos
13,45 Treze inteiros e quarenta e cinco centésimos
130,824 Cento e trinta inteiros e oitocentos e vinte e quatro milésimos

Transformando frações decimais em números decimais

Podemos escrever a fração decimal 1/10 como: 0,1. Esta fração é lida “um décimo”. Notamos que a vírgula separa a parte inteira da parte fracionária:

parte inteira parte fracionária
0  , 1

Uma outra situação nos mostra que a fração decimal 231/100 pode ser escrita como 2,31, que se lê da seguinte maneira: “dois inteiros e trinta e um centésimos”. Novamente observamos que a vírgula separa a parte inteira da parte fracionária:

parte inteira parte fracionária
2  , 31

Em geral, transforma-se uma fração decimal em um número decimal fazendo com que o numerador da fração tenha o mesmo número de casas decimais que o número de zeros do denominador. Na verdade, realiza-se a divisão do numerador pelo denominador. Por exemplo:

(a) 130/100  = 1,30
(b) 987/1000 = 0,987
(c) 5/1000   = 0,005

Transformando números decimais em frações decimais

Também é possível transformar um número decimal em uma fração decimal. Para isto, toma-se como numerador o número decimal sem a vírgula e como denominador a unidade (1) seguida de tantos zeros quantas forem as casas decimais do número dado. Como exemplo, temos:

(a) 0,5   = 5/10
(b) 0,05  = 5/100
(c) 2,41  = 241/100
(d) 7,345 = 7345/1000

Propriedades dos números decimais

Zeros após o último algarismo significativo: Um número decimal não se altera quando se acrescenta ou se retira um ou mais zeros à direita do último algarismo não nulo de sua parte decimal. Por exemplo:

(a) 0,5          = 0,50 = 0,500 = 0,5000
(b) 1,0002       = 1,00020 = 1,000200
(c) 3,1415926535 = 3,141592653500000000

Multiplicação por uma potência de 10: Para multiplicar um número decimal por 10, por 100, por 1000, basta deslocar a vírgula para a direita uma, duas, ou três casas decimais. Por exemplo:

(a) 7,4 x 10   = 74
(b) 7,4 x 100  = 740
(c) 7,4 x 1000 = 7400

Divisão por uma potência de 10: Para dividir um número decimal por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda uma, duas, três, … casas decimais. Por exemplo:

(a) 247,5 ÷ 10   = 24,75
(b) 247,5 ÷ 100  =  2,475
(c) 247,5 ÷ 1000 =  0,2475

Operações com números decimais

Adição e Subtração: Para efetuar a adição ou a subtração de números decimais temos que seguir alguns passos:

(a) Igualar a quantidade de casas decimais dos números decimais a serem somados ou subtraídos acrescentando zeros à direita de suas partes decimais. Por exemplo:

(a) 2,4 + 1,723 = 2,400 + 1,723
(b) 2,4 – 1,723 = 2,400 – 1,723

(b) Escrever os numerais observando as colunas da parte inteira (unidades, dezenas, centenas, etc), de forma que:

o algarismo das unidades de um número deverá estar embaixo do algarismo das unidades do outro número,

o algarismo das dezenas de um número deverá estar em baixo do algarismo das dezenas do outro número,

o algarismo das centenas deverá estar em baixo do algarismo das centenas do outro número, etc),

a vírgula deverá estar debaixo da outra vírgula, e

a parte decimal (décimos, centésimos, milésimos, etc) de forma que décimos sob décimos, centésimos sob centésimos, milésimos sob milésimos, etc.

Dois exemplos:

2,400     2,400
+ 1,723   – 1,723
——-   ——-

(c) Realizar a adição ou a subtração.

Multiplicação de números decimais: Podemos multiplicar dois números decimais transformando cada um dos números decimais em frações decimais e realizar a multiplicação de numerador por numerador e denominador por denominador. Por exemplo:

2,25×3,5 = 225


100

× 35


10

= 225×35


100×10

= 7875


1000

= 7,875

Podemos também multiplicar os números decimais como se fossem inteiros e dar ao produto tantas casas quantas forem as casas do multiplicando somadas às do multiplicador. Por exemplo:

 2,25 2 casas decimais multiplicando
x   3,5 1 casa decimal multiplicador
 1125
+  675
 7875
7,875 3 casas decimais Produto

Divisão de números decimais: Como visto anteriormente, se multiplicarmos tanto o dividendo como o divisor de uma divisão por 10, 100 ou 1000, o quociente não se alterará. Utilizando essas informações poderemos efetuar divisões entre números decimais como se fossem divisões de números inteiros. Por exemplo: 3,6÷0,4=?

Aqui, dividendo e divisor têm apenas uma casa decimal, logo multiplicamos ambos por 10 para que o quociente não se altere. Assim tanto o dividendo como o divisor serão números inteiros. Na prática, dizemos que “cortamos” a vírgula.

3,6÷0,4 = 3,6


0,4

= 36×10


4×10

= 36


4

= 9

Um outro exemplo:

0,35÷7= 0,35


7

= 0,35×100


7×100

= 35


700

= 35÷7


700÷7

= 5


100

= 0,05

Neste caso, o dividendo tem duas casas decimais e o divisor é um inteiro, logo multiplicamos ambos por 100 para que o quociente não se altere. Assim tanto o dividendo como o divisor serão inteiros.

Exercício: Uma pessoa de bom coração doou 35 alqueires paulistas de terra para 700 pessoas. Sabendo-se que cada alqueire paulista mede 24.200 metros quadrados, qual será a área que cada um receberá?

Divisão com o dividendo menor do que o divisor: Vamos considerar a divisão de 35 (dividendo) por 700 (divisor). Transforma-se o dividendo, multiplicando-se por 10, 100, …, para obter 350 décimos, 3500 centésimos, … até que o novo dividendo fique maior do que o divisor, para que a divisão se torne possível. Neste caso, há a necessidade de multiplicar por 100.

Assim a divisão de 35 por 700 será transformada numa divisão de 3500 por 700. Como acrescentamos dois zeros ao dividendo, iniciamos o quociente com dois zeros, colocando-se uma vírgula após o primeiro zero. Isto pode ser justificado pelo fato que se multiplicarmos o dividendo por 100, o quociente ficará dividido por 100.

dividendo 3500  700 divisor
resto 0 0,05 quociente

Realiza-se a divisão de 3500 por 700 para obter 5, concluindo que 0,35/7=35/700=0,05.

Divisão de números naturais com quociente decimal: A divisão de 10 por 16 não fornecerá um inteiro no quociente. Como 10 < 16, o quociente da divisão não será um inteiro, assim para dividir o número 10 por 16, montamos uma tabela semelhante à divisão de dois números inteiros.

10 16
?

(1) Multiplicando o dividendo por 10, o quociente ficará dividido por 10. Isto justifica a presença do algarismo 0 seguido de uma vírgula no quociente.

100 16
0,

(2) Realizamos a divisão de 100 por 16. O resultado será 6 e o resto será 4.

100 16
-96 0,6
4

(3) O resto 4 corresponde a 4 décimos = 40 centésimos, razão pela qual colocamos um zero (0) à direita do número 4.

100 16
-96 0,6
40 .

(4) Dividimos 40 por 16 para obter o quociente 2 e o novo resto será 8.

. (5) O resto 8 corresponde a 8 centésimos = 80 milésimos, razão pela qual inserimos um 0 à direita do número 8. Dividimos 80 por 16 para obter o quociente 5 e o resto igual a 0.

100 16
-96 0,625
40 .
-32 .
80 .
-80 .
0 .

A divisão 10/16 é igual a 0,625. O o quociente é um número decimal exato, embora não seja um inteiro.

Comparação de números decimais

A comparação de números decimais pode ser feita analisando-se as partes inteiras e decimais desses números. Para isso, faremos uso dos sinais: > (que se lê: maior); < (que se lê: menor) ou = (que se lê: igual).

Números com partes inteiras diferentes: O maior número é aquele que tem a parte inteira maior. Por exemplo:

(a) 4,1 > 2,76, pois 4 é maior do que 2.
(b) 3,7 < 5,4,  pois 3 é menor do que 5.

Números com partes inteiras iguais: Igualamos o número de casas decimais acrescentando zeros tantos quantos forem necessários. Após esta operação, teremos dois números com a mesma parte inteira mas com partes decimais diferentes. Basta comparar estas partes decimais para constatar qual é o maior deles. Alguns exemplos, são:

(a) 12,4 > 12,31 pois 12,4=12,40 e 40 > 31.
(b) 8,032 < 8,47 pois 8,47=8,470 e 032 < 470.
(c) 4,3 = 4,3    pois 4=4 e 3=3.

Porcentagem

Ao abrir um jornal, ligar uma televisão, olhar vitrines, é comum depararmos com expressões do tipo:

  • A inflação do mês foi de 4% (lê-se quatro por cento)
  • Desconto de 10% (dez por cento) nas compras à vista.
  • O índice de reajuste salarial de março é de 0,6% (seis décimos por cento)

A porcentagem é um modo de comparar números usando a proporção direta, onde uma das razões da proporção é uma fração cujo denominador é 100. Toda razão a/b na qual b=100 chama-se porcentagem.

Exemplos:

(1) Se há 30% de meninas em uma sala de alunos, pode-se comparar o número de meninas com o número total de alunos da sala, usando para isto uma fração de denominador 100, para significar que se a sala tivesse 100 alunos então 30 desses alunos seriam meninas. Trinta por cento é o mesmo que
30 100

30


100

= 30%

(2) Calcular 40% de R$300,00 é o mesmo que determinar um valor X que re

presente em R$300,00 a mesma proporção que R$40,00 em R$100,00. Isto pode ser resumido na proporção:

40


100

= X


300

Como o produto dos meios é igual ao produto dos extremos, podemos realizar a multiplicação cruzada para obter: 100X=12000, assim X=120

Logo, 40% de R$300,00 é igual a R$120,00.

(3) Li 45% de um livro que tem 200 páginas. Quantas páginas ainda faltam para ler?

45


100

= X


200

o que implica que 100X=9000, logo X=90. Como eu já li 90 páginas, ainda faltam 200-90=110 páginas.

Fonte: pessoal.sercomtel.com.br

Conteúdo Relacionado

 

Veja também

Números Naturais

Números Naturais

PUBLICIDADE O que são números naturais? Um número natural é um número de contagem, um …

Monômios

PUBLICIDADE O que são monômios? Um monômio é um termo composto pela multiplicação entre uma …

funcoes-trigonometricas

Funções Trigonométricas

PUBLICIDADE O que são funções trigonométricas? As funções trigonométricas são funções angulares, que são relacionadas …

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios são marcados com *

Time limit is exhausted. Please reload the CAPTCHA.

300-209 exam 70-461 exam hp0-s41 dumps 640-916 exam 200-125 dumps 200-105 dumps 100-105 dumps 210-260 dumps 300-101 dumps 300-206 dumps 400-201 dumps Professor Messer's CompTIA N10-006 exam Network+