Facebook do Portal São Francisco Google+
+ circle
Home  Polinômios  Voltar

POLINÔMIOS

Seja C o conjunto dos números complexos ( números da forma a + bi , onde a e b são números reais e i é a unidade imaginária tal que i2 = -1) .

Entende-se por polinômio em C à função:

P(x) = aoxn + a1xn-1 + a2xn-2 + ... + an-1x + an , onde os números complexos ao , a1 , ... , an são os coeficientes , n é um número natural denominado grau do polinômio e x é a variável do polinômio.

Exemplo

P(x) = x5 + 3x2 - 7x + 6 (ao = 1 , a1 = 0 , a2 = 0 , a3 = 3 , a4 = -7 e a5 = 6 ).
O grau de P(x) é igual a 5 .

Nota: Os polinômios recebem nomes particulares a saber:
Binômio : possuem dois termos. Exemplo : r(x) = 3x + 1 (grau 1).
Trinômio: possuem 3 termos: Exemplo : q(x) = 4x2 + x - 1 ( grau 2).
A partir de 4 termos, recorre-se à designação genérica : polinômios.

Valor numérico do polinômio

Sendo m um número complexo ( lembre-se que todo número real é também um número complexo) , denominamos valor numérico de um polinômio P(x) para x = m , ao valor P(m) ou seja o valor que obtemos substituindo x por m .

Exemplo: Qual o valor numérico do polinômio p(x) = x3 - 5x + 2 para x = -1?
Teremos, substituindo a variável x por x = -1 Þ p(-1) = (-1)3 - 5(-1) + 2 = -1 + 5 + 2 = 6 \ p(-1) = 6.

Raiz (ou zero) de um polinômio

O número complexo m é raiz ou zero do polinômio P(x) quando P(m) = 0 .

Exemplo: i é raiz do polinômio P(x) = x2 + 1 , pois P(i) = 0 .

Lembre-se que i2 = -1, ou seja , o quadrado da unidade imaginária é igual a -1.

O número natural 2 é raiz do polinômio P(x) = x3 - 2x2 - x + 2 , pois P(2) = 0 (verifique!) .

Soma dos coeficientes de um polinômio

Para calcular a soma S dos coeficientes de um polinômio P(x) , basta calcular o valor numérico do polinômio para x = 1 ou seja, calcular P(1).

Exemplos:

a) P(x) = 2x4 + 3x2 - 7x + 10 ® S = P(1) = 2 + 3 - 7 + 10 = 8.
b) Qual a soma dos coeficientes de S(x) = x156 + x?
Ora, substituindo x por 1, encontramos S = 2. (Lembre-se que 1156 = 1).

IMPORTANTE: Às vezes, um polinômio pode vir expresso como uma potência do tipo (x + a)n , denominado binômio de Newton (Isaac Newton - físico, astrônomo e matemático inglês, 1642 - 1727) . Ainda assim, a propriedade anterior é válida.

Por exemplo, qual a soma dos coeficientes do polinômio P(x) = ( 2x - 3)102 ?

Ora, substituindo x por 1, vem: S = (2.1 - 3)102 = (2-3)102 = (-1)102 = 1 (lembre-se que toda potência de expoente par é positiva).

Outro exemplo:

Qual a soma dos coeficientes do polinômio T(x) = (5x + 1)4 ?
Ora, temos para x = 1 : S = T(1) = (5.1 + 1)4 = 64 = 6.6.6.6 = 1296

Identidade de polinômios

Polinômio identicamente nulo (ou simplesmente polinômio nulo)

É aquele cujo valor numérico é igual a zero para todo valor da variável x . Indicamos P º 0 (polinômio nulo) .
Para um polinômio P(x) ser um polinômio nulo é necessário e suficiente que todos os seus coeficientes sejam nulos (iguais a zero)

Polinômios idênticos - São polinômios iguais

Se P e Q são polinômios idênticos , escrevemos P º Q . É óbvio que se dois polinômios são idênticos , então os seus coeficientes dos termos correspondentes são iguais .
A expressão P º Q é denominada identidade .

Fonte: www.terra.com.br

Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal