Breaking News
QUESTION 1 You have a hybrid Exchange Server 2016 organization. Some of the mailboxes in the research department are hosted on-premises. Other mailboxes in the research department are stored in Microsoft Office 365. You need to search the mailboxes in the research department for email messages that contain a specific keyword in the message body. What should you do? A. From the Exchange Online Exchange admin center, search the delivery reports. B. Form the on-premises Exchange center, search the delivery reports. C. From the Exchange Online Exchange admin SY0-401 exam center, create a new In-Place eDiscovery & Hold. D. From the Office 365 Compliance Center, create a new Compliance Search. E. From the on-premises Exchange admin center, create a new In-Place eDiscovery & Hold. Correct Answer: E QUESTION 2 You have an Exchange Server 2016 organization. You plan to enable Federated Sharing. You need to create a DNS record to store the Application Identifier (AppID) of the domain for the federated trust. Which type of record should you create? A. A B. CNAME C. SRV D. TXT Correct Answer: D QUESTION 3 Your company has an Exchange Server 2016 200-310 exam Organization. The organization has a four- node database availability group (DAG) that spans two data centers. Each data center is configured as a separate Active Directory site. The data centers connect to each other by using a high-speed WAN link. Each data center connects directly to the Internet and has a scoped Send connector configured. The company's public DNS zone contains one MX record. You need to ensure that if an Internet link becomes unavailable in one data center, email messages destined to external recipients can 400-101 exam be routed through the other data center. What should you do? A. Create an MX record in the internal DNS zone B. B. Clear the Scoped Send Connector check box C. Create a Receive connector in each data center. D. Clear the Proxy through Client Access server check box Correct Answer: AQUESTION 4 Your network contains a single Active Directory forest. The forest contains two sites named Site1 and Site2. You have an Exchange Server 2016 organization. The organization contains two servers in each site. You have a database availability group (DAG) that spans both sites. The file share witness is in Site1. If a power failure occurs at Site1, you plan to mount the databases in Site2. When the power is restored in Site1, you Cisco CCNP Security 300-207 exam SITCS need to prevent the databases from mounting in Site1. What should you do? A. Disable AutoReseed for the DAG. B. Implement an alternate file share witness. C. Configure Datacenter Activation Coordination (DAC) mode. D. Force a rediscovery of the EX200 exam network when the power is restored. Correct Answer: C QUESTION 5 A new company has the following: Two offices that connect to each other by using a low-latency WAN link In each office, a data center that is configured as a separate subnet Five hundred users in each office You plan to deploy Exchange Server 2016 to the network. You need to recommend which Active Directory deployment to use to support the Exchange Server 2016 deployment What is the best recommendation to achieve the goal? A. Deploy two forests that each contains one site and one site link. Deploy two domain controllers to each forest. In each forest configure one domain controller as a global catalog server B. Deploy one forest that contains one site and one site link. Deploy four domain controllers. Configure all of the domain controllers as global catalog servers. C. Deploy one forest that contains two sites and two site links. Deploy two domain controllers to each site in each site, configure one domain controller as a global catalog server D. Deploy one forest that contains two sites and one site link. Deploy two domain controllers to each site. Configure both domain controllers as global catalog servers Correct Answer: C QUESTION 6 How is the IBM Content Template Catalog delivered for installation? A. as an EXE file B. as a ZIP file of XML files C. as a Web Appli cati on Archive file D. as a Portal Application Archive file Correct Answer: D QUESTION 7 Your company has a data center. The data center contains a server that has Exchange Server 2016 and the Mailbox server role installed. Outlook 300-101 exam anywhere clients connect to the Mailbox server by using thename outlook.contoso.com. The company plans to open a second data center and to provision a database availability group (DAG) that spans both data centers. You need to ensure that Outlook Anywhere clients can connect if one of the data centers becomes unavailable. What should you add to DNS? A. one A record B. two TXT records C. two SRV records D. one MX record Correct Answer: A QUESTION 8 You have an Exchange Server 2016 EX300 exam organization. The organization contains a database availability group (DAG). You need to identify the number of transaction logs that are in replay queue. Which cmdlet should you use? A. Test-ServiceHealth B. Test-ReplicationHealth C. Get-DatabaseAvailabilityGroup D. Get-MailboxDatabaseCopyStatus Correct Answer: D QUESTION 9 All users access their email by using Microsoft Outlook 2013 From Performance Monitor, you discover that the MSExchange Database\I/O Database Reads Average Latency counter displays values that are higher than normal You need to identify the impact of the high counter values on user connections in the Exchange Server organization. What are two client connections 400-051 exam that will meet performance? A. Outlook on the web B. IMAP4 clients C. mobile devices using Exchange ActiveSync D. Outlook in Cached Exchange ModeE. Outlook in Online Mode Correct Answer: CE QUESTION 10 You work for a company named Litware, Inc. that hosts all email in Exchange Online. A user named User1 sends an email message to an Pass CISCO 300-115 exam - test questions external user User 1 discovers that the email message is delayed for two hours before being delivered. The external user sends you the message header of the delayed message You need to identify which host in the message path is responsible for the delivery delay. What should you do? A. Review the contents of the protocol logs. B. Search the message tracking logs. C. Search the delivery reports 200-355 exam for the message D. Review the contents of the application log E. Input the message header to the Exchange Remote Connectivity Analyzer Correct Answer: E QUESTION 11 You have an Exchange Server 2016 organization. The organization contains three Mailbox servers. The servers are configured as shown in the following table You have distribution group named Group1. Group1 contains three members. The members are configured as shown in the following table. You discover that when User1 sends email messages to Group1, all of the messages are delivered to EX02 first. You need to identify why the email messages sent to Group1 are sent to EX02 instead. What should you identify? A. EX02 is configured as an expansion server. B. The arbitration mailbox is hosted 300-320 exam on EX02.C. Site2 has universal group membership caching enabled. D. Site2 is configured as a hub site. Correct Answer: A
Home / Corpo Humano / Sistema Muscular

Sistema Muscular

PUBLICIDADE

O tecido muscular é composto por células altamente especializadas em se contrair.

Nós possuímos três tipos de músculos no organismo.  O musculo estriado esquelético, associado ao esqueleto. Possui contração voluntária.

O músculo estriado cardíaco é um músculo involuntário e é específico ao coração.  Também é chamado de miocárdio.

O músculo liso é o músculo responsável pelos processos dos órgãos internos, como o intestino por exemplo. É de controle involuntário.

Os músculos possuem quatro funções principais: a movimentação do corpo, o movimento das substancias dentro no organismo, estabilização das posições do corpo e controle do volume dos órgãos internos , controle do calor.

As principais características  do tecido muscular são:

– extensibilidade, excitabilidade, contratilidade e a elasticidade.

Por Colégio São Francisco

Características gerais:

Responsáveis por todos os nossos movimentos: batimentos cardíacos, pulsar de uma artéria, contração do útero, movimento peristáltico, etc.
Formado por células altamente contráteis, alongadas, ricas em mitocôndrias
Suas células se contraem devido ao encurtamento das miofibrilas contrateis de actina e miosina.

Três tipos:

Estriado Esquelético
Estriado Cardíaco
Não-estriado (liso ou visceral)

TECIDO MUSCULAR ESTRIADO ESQUELÉTICO

Forma os músculos esqueléticos do corpo humano, compõem o sistema muscular, prendem-se aos ossos do sistema esquelético e juntamente com ele compoem o aparelho locomotor.
Apresentam contração voluntária
Cada célula é chamada de fibra muscular e também miócito
As células são multinucleadas
Cada fibra é revestida por um envoltório, o endomísio que penetra nos tendões.
Oendomósio + membrana plasmática = sarcolema
Ocitoplasma da célula muscular é o sarcoplasma, ele armazena grande quantidade de mitocôndrias e granulos de glicogênio
Oretículo endoplasmático não-granuloso é chamado de retículo sarcoplasmático e armazena íons cálcio.
Envolvendo um conjunto de miócitos existe o perimísio e envolvendo todo o músculo existe o epimísio

TECIDO MUSCULAR ESTRIADO CARDÍACO

Constitui o coração
Miocárdio
Apresentam contração involuntária
Apresentam apenas endomísio.
Possuem junções tipo gap, um estímulo forte se espalha levando todo o órgão a se contrair.
Afrequência cardíaca (número de batimentos por minuto) é controlada por um grupo de células modificadas chamada de marca passo cardíaco ou nó-sinoatrial que a cada 1s emite um impulso elétrico.

TECIDO MUSCULAR ESTRIADO LISO

Liso ou visceral
Contração involuntária e mais lenta que a fibra esquelética, permanecem contraídas por um período maior
A actina e a miosina se dispoem irregularmente formando uma trama dimensional, não apresentam um arranjo regular como das miofibrilas do estriado esquelético.
Presente em órgãos viscerais: estomago, intestino, úteros, ductos de glândulas, etc.
Células uninucladas com as extremidades alongadas (fusiformes).
Sem estrias
Contato por junções gap e zonas de adesão
Possui apenas endomísio

ESTRUTURAS DO TECIDO MUSCULAR

O tecido muscular é formado por conjuntos de fibras musculares.

Na maioria dos músculos, se estendem por todo o comprimento do músculo, e cada uma é inervada por apenas uma junção neuro-muscular, localizada no meio da fibra. As fibras são formadas por milhares de miofibrilas, agrupadas em unidades funcionais denominadas sarcômeros.

Sistema Muscular
Tecido muscular

sistem2
Fibra muscular vista no microscópio

sistem3
Músculos da Coxa
Feito a partir de peça real, com recursos de computação gráfica

PROCESSO DE CONTRAÇÃO MUSCULAR

Após a descoberta dos filamentos protéicos (actina e miosina), alguns pesquisadores passaram a acreditar que a contração muscular se daria por encurtamento desses filamentos. Mais tarde surgiu a teoria dos filamentos deslizantes.

Segundo essa teoria, os filamentos não se encurtam, mas deslizam uns sobre os outros. Após receber um estímulo químico – gerado anteriormente por um impulso nervoso, os filamentos mais finos ligam-se à extremidade dos mais grossos (denominada cabeça). Assim, os filamentos grossos sofrem uma deformação – com gasto de energia, que resulta no deslocamento horizontal do conjunto. Após esse deslocamento, há o desligamento dos filamentos. O processo se repete entre vários filamentos, até quando persistir a ação química proporcionada pelo estímulo elétrico, o que garante a contração muscular. O tempo de resposta de uma fibra muscular gira em torno de 3 ms.

A substância que proporciona a deformação protéica necessária para o ligamento dos filamentos finos e grossos é o cátion de cálcio (Ca 2+). Ele se encontra estocado dentro dos retículos sarcoplasmáticos, nos túbulos longitudinais. O potencial de ação age diretamente sobre as paredes do túbulo longitudinal, fazendo com que liberem cálcio.

Entretanto, o cálcio não permanece no interior das miofibrilas por muito tempo: tão logo a corrente elétrica causadas pelo potencial de ação tenha passado, os túbulos longitudinais reabsorvem quase que imediatamente os íons de cálcio. No fim desse pulso, o cálcio é bombeado de volta, com conseqüente gasto de energia, e o músculo relaxa imediatamente.

O impulso elétrico, além de controlar o início e o término do processo, também faz uma modulação na amplitude da contração: quanto maior a sua freqüência, mais intensa será a contração das fibras musculares.

Quando o músculo é estimulado a altas freqüências, ele não é mais capaz de relaxar entre contrações sucessivas: isso causa fusão das contrações; com estímulos a 100 Hz, por exemplo, ocorre uma única contração sustentada, que é chamada de “tétano fundido”.

Gerado no cérebro ou na medula, o estímulo nervoso percorre um caminho pré-determinado na rede de neurônios até atingir o alvo: a placa motora, onde ele age. A interface nervo/músculo é denominada junção neuro-muscular. Aqui o potencial elétrico é denominado potencial de ação.

Esse potencial de ação é propagado rapidamente pela superfície da fibra e conduzido para o seu interior pelos túbulos “T”. Eles recebem essa denominação devido ao seu formato, ideal para penetrar nas regiões mais profundas da fibra muscular.

Uma Unidade Motora é o conjunto formado por um motoneurônio – neurônio que se liga à placa motora, com as fibras musculares por ele inervadas. Já foi demonstrado que durante o aumento progressivo de força de uma contração muscular, unidades motoras progressivamente maiores vão sendo recrutadas.

Há uma relação entre tempo de resposta e resistência à fadiga: quanto mais rápida a resposta, mais suscetível à fadiga é o músculo, e vice-versa. A panturrilha, por exemplo, tem contração lenta, embora resista mais. Os músculos extra-oculares, por outro lado, são mais rápidos, e mais fatigáveis também.

Os músculos não são capazes de se contrair e relaxar de modo suficientemente rápido para acompanhar variações grandes na freqüência de disparo de estímulos aplicados ao nervo motor. É como se houvesse, na entrada do sistema muscular, um filtro passa-baixas, permitindo somente as respostas a estímulos de baixas freqüências. Quando há a necessidade de realização de movimentos bruscos, ocorre uma engenhosa alternância na contração de músculos antagonistas.

ARCO REFLEXO

O arco reflexo medular representa o nível mais simples, na hierarquia dos mecanismos de controle motor. A medula espinhal recebe estímulos sensoriais do músculo, e envia impulsos motores para ele. Um exemplo de arco reflexo é o “reflexo patelar”, no qual há uma súbita contração do músculo mediante um estímulo direcionado ao tendão do joelho.

Alguns músculos possuem, em suas entranhas, o fuso neuro-muscular. A ele são ligadas fibras nervosas que se dirigem à medula espinhal.

Ao receber os impulsos elétricos provenientes de um fuso neuro-muscular, a medula gera potenciais de ação nos axônios motores, e o músculo irá se contrair, retornando ao comprimento inicial. As fibras intra-fusais são capazes de gerar potenciais de ação com freqüências que refletem fielmente tanto o comprimento inicial e final do músculo que se alonga (aspectos estáticos do alongamento), quanto a velocidade com que se processa tal alongamento (aspectos dinâmicos do alongamento).

Como vemos, o arco reflexo simples visa fornecer um mecanismo de manutenção do comprimento do músculo dentro de parâmetros constantes. O arco reflexo simples, é, pois, um exemplo de mecanismo servo, com realimentação.

sistem4
Desenho esquemático da malha de controle que envolve músculo, tendão, fuso muscular e fibras nervosas

TIPOS DE CONTRAÇÃO MUSCULAR

Contração Muscular Isométrica

Nesse tipo de contração, o comprimento do músculo não se altera –não ocorre deslizamento das miofibrilas nem realização de trabalho. O gasto de energia é menor.

Contração Muscular Isotônica

Aqui há o encurtamento do músculo, mas a tensão sobre ele permanece constante.

Acontece na movimentação de uma carga, o que envolve princípios de inércia: o peso deve ser primeiramente acelerado – o movimento continua mesmo após o término da contração. Sua duração é maior que a contração isométrica. Os músculos podem contrair-se tanto isométrica quanto isotonicamente. Mas a maioria das contrações é uma mistura dos dois tipos.

FADIGA MUSCULAR

A contração forte e prolongada de um músculo leva-o ao estado de fadiga muscular. Isso decorre da incapacidade dos processos metabólicos e contráteis das fibras musculares em continuarem proporcionando o mesmo trabalho. O nervo continua a funcionar adequadamente, os impulsos nervosos passam normalmente através da junção neuro-muscular, mas a contração vai se tornando cada vez mais débil por causa do decaimento do fornecimento de energia pelas mitocôndrias das fibras musculares. A interrupção do fluxo sangüíneo para um músculo leva-o rapidamente à fadiga em aproximadamente um minuto, devido à evidente perda de suprimento nutritivo.

HIPERTROFIA E ATROFIA MUSCULARES

Hipertrofia

Ocorre quando há atividade muscular excessiva ou forçada, culminando, a médio ou a longo prazo, num aumento do tamanho do músculo.

Atrofia

Ocorre sempre que um músculo não é usado, ou quando o é apenas para contrações muito fracas. Assim, quando um membro é imobilizado por muito tempo, como acontece em fraturas e paralisias, o músculo em questão se atrofia.

Uma maneira de realizar hipertrofia ou evitar a atrofia de músculos é a utilização da ginástica passiva. Ela é realizada através de aparelhos que geram pulsos elétricos sincronizados e com a intensidade certa – sinais devem chegar com amplitudes maiores que 80mV na membrana da fibra muscular, para causar despolarização da membrana e conseqüente disparo do processo de contração muscular. Esses pulsos são aplicados diretamente sobre o músculo, através de eletrodos ligados à superfície da pele. Porém, o efeito não é o mesmo. Além da atenuação do sinal devido à passagem pela pele – o que pode ser corrigido através de um aumento da amplitude do sinal aplicado, o sinal não atinge de modo satisfatório o interior das fibras. Como resultado, o músculo não é exercitado por igual.

MÚSCULOS X MALHAS DE CONTROLE

O sistema muscular apresenta diversas malhas de controle cujo controlador é o sistema nervoso central – quer seja a medula, em movimentos involuntários, quer seja o cérebro, quando abordados movimentos voluntários. Os atuadores, para todas as malhas de controle dentro do sistema, sempre serão as fibras musculares. As “medições” – informações sobre o estado atual da “máquina”, são feitas periodicamente, no caso de malhas realimentadas. Os elementos responsáveis por esta etapa do processo são o aparelho tendinoso de Golgi e o fuso neuro-muscular, se considerarmos elementos apenas do sistema muscular.

Sua ação limita-se a malhas de controle para movimentos involuntários. Para movimentos voluntários, observam-se órgãos não pertencentes ao sistema, como olhos e pele. Em controle de arco reflexo de dor (movimento involuntário), os sensores de dor sob a pele fazem o papel dos medidores.

Músculos

Aparência da célula:

Sistema Muscular
Músculo estriado esquelético

Sistema Muscular
Músculo liso

Sistema Muscular
Músculo cardíaco

Localização:

Sistema Muscular
Cobrindo o esquelético

Sistema Muscular
Órgãos ou víceras (estômago)

Sistema Muscular
Coração

Os músculos são os órgãos ativos do movimento. São eles dotados da capacidade de contrair-se e de relaxar-se, e, em conseqüência, transmitem os seus movimentos aos ossos sobre os quais se inserem, os quais formam o sistema passivo do aparelho locomotor. O movimento de todo o corpo humano ou de algumas das suas partes – cabeça, pescoço, tronco, extremidades deve-se aos músculos. De músculos estão, ainda, dotados os Órgãos que podem produzir certos movimentos (coração, estômago, intestino, bexiga etc.).

A musculatura toda do corpo humano pode, portanto, dividir-se em duas categorias:

1) Os músculos esqueléticos, que se ligam ao esqueleto; estes músculos se inserem sobre os ossos e sobre as cartilagens e contribuem, com a pele e o esqueleto, para formar o invólucro exterior do corpo. Constituem aquilo que vulgarmente se chama a “carne” e são comandados pela vontade.
2)
Os músculos viscerais, que entram na constituição dos órgãos profundos, ou vísceras, para assegurar-lhes determinados movimentos. Estes músculos têm estrutura “lisa” e funcionam independentemente da nossa vontade.

Uma categoria à parte é constituída pelos músculos cutâneos, os quais se inserem na pele, pelo menos por uma das suas, extremidades. No homem, esses músculos são pouco desenvolvidos e são encontrados, na sua maior parte, na cabeça e no pescoço (músculos mímicos), mas são desenvolvidíssimos nos animais.

As células musculares, chamadas fibras, têm a capacidade de mover-se. O movimento, uma das propriedades mais surpreendentes da matéria vivente, não é patrimônio exclusivo do músculo. No século XVII, observou-se através de um microscópio o movimento de células espermáticas.

Existe uma grande variedade de células capazes de mover-se, como, por exemplo: os glóbulos brancos que viajam pelo sangue até os tecidos onde vão atuar, o movimento dos cílios (pelos) na superfície de algumas células como no Sistema Respiratório. Nestes casos, o movimento é função secundária das células.

Com o termo “músculo” nos referimos a um conjunto de células musculares organizadas, unidas por tecido conectivo. Cada célula muscular se denomina fibra muscular.

No corpo humano há três tipos de músculos:

Estriado, voluntário ou esquelético.
Liso, involuntário.
Cardíaco.

Músculo esquelético estriado ou voluntário

As células do músculo esquelético são cilíndricas, filiformes. Uma fibra muscular ordinária mede aproximadamente 2,5 cm de comprimento e sua largura é menor de um décimo de milímetro. As fibras musculares se agrupam em feixes. Cada músculo se compõe de muitos feixes de fibras musculares.

É avermelhado, de contração brusca, e seus movimentos dependem da vontade dos indivíduos. Constitui o tecido mais abundante do organismo e representa de 40 a 45% do peso corporal total.

A carne que reveste os ossos é tecido muscular. Esses se encontram unidos aos ossos do corpo e sua contração é que origina os movimentos das distintas partes do esqueleto, e também participa em outras atividades como a eliminação da urina e das fezes. A atividade do músculo esquelético está sob o controle do sistema nervoso central e os movimentos que produz se relacionam principalmente com interações entre o organismo e o meio externo.

Chama-se de estriado porque suas células aparecem estriadas ou raiadas ao microscópio, igual ao músculo cardíaco. Cada fibra muscular se comporta como uma unidade. Um músculo esquelético tem tantas unidades quanto fibras. Por isso se define como multiunitário. O movimento é feito por contração da fibra muscular.

Músculo liso ou involuntário

As células do músculo liso são sempre fusiformes e alargadas. Seu tamanho varia muito, dependendo de sua origem. As células menores se encontram nas arteríolas e as de maior tamanho no útero grávido. Suas fibras não apresentam estriações e por isso são chamados de liso. Tendem a ser de cor pálida, sua contração é lenta e sustentada, e não estão sujeitos à vontade da pessoa; de onde deriva seu nome de involuntário.

Esse músculo reveste ou forma parte das paredes de órgãos ocos tais como a traquéia, o estômago, o trato intestinal, a bexiga, o útero e os vasos sanguíneos.

Como um exemplo de sua função, podemos dizer que os músculos lisos comprimem o conteúdo dessas cavidades, intervindo desta maneira em processos tais como a regulação da pressão arterial, a digestão etc.

Além desses conjuntos organizados, também se encontram células de músculo liso no músculo eretor do pêlo, músculos intrínsecos do olho etc. A regulação de sua atividade é realizada pelo sistema nervoso autônomo e hormônios circulantes. As fibras do músculo liso são menores e mais delicadas do que as do músculo esquelético. Não se inserem no osso, mas atuam como paredes de órgãos ocos.

Em volta dos tubos, em geral, há duas capas, uma interna circular e uma externa longitudinal. A musculatura circular constringe o tubo; a longitudinal encurta o tubo e tende a ampliar a luz. No tubo digestivo, o esforço conjunto da musculatura circular e da longitudinal impulsiona o conteúdo do tubo produzindo ondas de constrição chamadas movimentos peristálticos.

Há dois tipos de músculo liso:

Multi-unitário

Cada fibra se comporta como uma unidade independente, comportamento semelhante ao músculo esquelético.

Ex: músculo eretor do pêlo, músculos intrínsecos do olho etc. Não se contraem espontaneamente. A estimulação nervosa autônoma é que desencadeia sua contração.

Unitários simples

As células se comportam de modo semelhante ao músculo cardíaco, como se fossem uma estrutura única. O impulso se transmite de célula a célula. Pode-se dizer que o músculo, em sua totalidade, funciona como uma unidade.

Ex: músculo intestinal, do útero, ureter etc.

Músculo cardíaco ou miocárdio

Forma as paredes do coração, não está sujeito ao controle da vontade, tem aspecto estriado.

Suas fibras se dispõem juntas para formar uma rede contínua e ramificada. Portanto, o miocárdio pode contrair-se em massa.

O coração responde a um estímulo do tipo ” tudo ou nada”, daí que se classifique como unitário simples. O músculo cardíaco se contrai ritmicamente 60 a 80 vezes por minuto.

 

Referências Bibliográficas

KENDALL, F.P. e CREARY, E.K. Força Muscular em Relação à Postura. In: Músculos, provas e funções, 4. ed., SP. Ed. Manole, 1995.
KENDALL, F.P. e CREARY, E.K. Movimentos das Articulações. In: Músculos, provas e funções, 3. ed., SP. Ed. Manole, 1987.
KISNER, C., CAROLYN, L.A. A coluna. In: Exercícios Terapêuticos, 2a ed., SP, Ed. Manole. 1992.
KISNER, C., CAROLYN, L.A. O cotovelo e complexo do antebraço. In: Exercícios Terapêuticos, 2a ed., SP, Ed. Manole. 1992.
Fisiologia Humana. Philippe Meyer. · Anatomia. Basmajian. 7ª Edição.
Tratados de Fisiologia Médica. Guyton – Hall. 9ª Edição.
Fisiologia Humana. Cingolani – Houssay. Tomo II.
Imagens e animações: Mosby Dicionário de Medicina, Enfermeria e Ciências da Saúde. 5ª Edição 2000. Espanha.

Tipos de músculos

Existem três tipos de músculos no organismo humano, bem como nos diversos animais, de acordo com o aspecto microscópico e velocidade de contração, que são:

Músculo liso ou visceral: Encontrado nos órgãos internos (aparelho digestivo, aparelho respiratório, aparelho urinário, útero, genitália e parede dos vasos sangüíneos e nos invertebrados, de um modo geral (platelmintos, anelídeos,etc). Esse tipo muscular não apresenta estrias ao microscópio e realiza movimentos lentos que não conseguimos exercer controle, ou seja, são involuntários.
Músculo estriado cardíaco:
Encontrado somente no coração. Esse tipo muscular, revela um aspecto estriado ao microscópio e é de contração rápida e involuntária. A freqüência normal de batimentos cardíacos no homem está em torno de 80 por minuto.
Músculo estriado esquelético:
Encontrado unido aos ossos do esqueleto, nas valvas de moluscos (conchas de ostras) e também nas patas e asas dos artrópodes (insetos). Esse tipo muscular realiza movimentos rápidos e voluntários.

Chama-se de estriado porque suas células aparecem estriadas ou raiadas ao microscópio, igual ao músculo cardíaco. Cada fibra muscular se comporta como uma unidade. Um músculo esquelético tem tantas unidades quanto fibras. Por isso se define como multiunitário. O movimento é feito por contração da fibra muscular.

Cada músculo tem um nervo motor (grupo de fibras nervosas) que entra nele.

Cada fibra nervosa se divide em ramas terminais, chegando cada rama a uma fibra muscular. Em conseqüência, a unidade motora esta formada por um só neurônio e o grupo de células musculares que este inerva. O músculo possui muitas unidades motoras. Responde de forma graduada dependendo do número de unidades motoras que se ativem.

A maquinaria contrátil da fibra muscular está formada por cadeias protéicas que se deslizam para encurtar a fibra muscular. Entre elas há a miosina e a actina, que constituem os filamentos grossos e finos, respectivamente. Quando um impulso chega através de uma fibra nervosa, o músculo se contrai.

Quando uma fibra muscular se contrai, se encurta e alarga. Seu comprimento diminui a 2/3 ou metade. Deduz-se que a amplitude do movimento depende do comprimento das fibras musculares. O período de recuperação do músculo esquelético é tão curto que o músculo pode responder a um segundo estímulo quando ainda perdura a contração correspondente ao primeiro. A superposição provoca um efeito de esgotamento superior ao normal.

Depois da contração, o músculo se recupera, consome oxigênio e elimina bióxido de carbono e calor em proporção superior registrada durante o repouso, determinando o período de recuperação.

O fato de que consome oxigênio e libera bióxido de carbono sugere que a contração é um processo de oxidação mas, aparentemente, não é essencial, já que o músculo pode se contrair na ausência de oxigênio, como em períodos de ação violenta; mas, nesses casos, se cansa mais rápido e podem aparecer cãibras.

É a membrana celular da fibra muscular, consiste de uma membrana celular verdadeira, a membrana plasmática e de uma fina camada de material polissacarídico; finas fibrilas colágenas também estão presentes na camada mais externa do sarcolema.

Miofibrilas: Filamentos de Actina e Miosina

Os filamentos de actina e miosina são grandes moléculas protéicas polimerizadas, responsáveis pela contração muscular. Os filamentos espessos são de miosina e os finos de actina. Os filamentos de actina e miosina se interdigitam parcialmente e determinam a existência de faixas claras e escuras alternadas nas miofibrilas.

As faixas claras que contém apenas filamentos de actina denominam-se bandas I , porque são isotrópicas à luz polarizada. As faixas escuras, que contém apenas filamentos de miosina, são denominadas bandas A , porque são anisotrópicas à luz polarizada. Os filamentos de actina estão ligados à membrana Z. A porção de uma miofibrila (ou de toda a fibra muscular) que se localiza entre duas membranas Z sucessivas denomina-se sarcômero. Quando uma fibra muscular é estirada além do seu comprimento de repouso, as extremidades dos filamentos de actina são afastadas, deixando uma área clara no centro da banda A, denominada zona H .

Sarcoplasma

As miofibrilas estão suspensas no interior da fibra muscular numa matriz denominada sarcoplasma, que é composta dos constituintes intracelulares habituais.O líquido sarcoplasmático contém grandes quantidades de potássio, fosfato, magnésio e enzimas. Também existe grande número de mitocôndrias, que se localizam entre e paralelamente as miofibrilas, o que indica grande necessidade de ATP formado naquelas organelas para que ocorra contração das miofibrilas.

Retículo Sarcoplasmático

No citoplasma também há um amplo e difuso retículo endoplasmático. Esse retículo apresenta uma organização especial extremamente importante no controle da contração muscular. A contração muscular ocorre por mecanismo de deslizamento de filamentos. Há forças de atração que ocorrem entre os filamentos de actina e miosina.

Em condições de repouso, essas forças de atração estão inibidas, mas quando um potencial de ação se propaga para o interior da fibra muscular, determina a liberação de grandes quantidades de íons cálcio para o sarcoplasma que circunda as miofibrilas.

Esses íons cálcio estavam contidos no retículo sarcoplasmático e quando liberados no sarcoplasma, ativam as forças de atração entre os filamentos de actina e miosina e dão início à contração. Porém, também é necessário energia para que ocorra o processo contrátil. Essa é derivada de ligações de alta energia do trifosfato de adenosina (ATP), que é degradado a difosfato de adenosina (ADP) para fornecer a energia necessária.

Papel dos íons Cálcio

Na presença de grandes quantidades de íons Cálcio, o próprio efeito inibidor do complexo troponina-tropomiosina sobre a actina é inibido. Quando os íons cálcio se combinam com a subunidade da troponina, possivelmente desenvolve uma alteração conformacional que, de algum modo, altera a fita de tropomiosina.

Ao mesmo tempo, as ligações entre troponina e actina tornam-se frouxas. É bem provável que essa combinação de efeitos movimente a fita de tropomiosina mais para o interior do sulco entre os dois filamentos de actina e, dessa forma, deixe “descobertos” os locais ativos da actina, permitindo que ocorra a contração.

Logo que o filamento de actina torna-se ativado pelos íons cálcio, acredita-se que os filamentos de miosina sejam imediatamente atraídos pelos locais ativos do filamento de actina e isso determina a contração.

Bomba de Cálcio para remoção de íons Cálcio do Líquido Sarcoplasmático

Depois dos íons cálcio terem sido liberados da cisterna e se terem difundido para as miofibrilas, a contração muscular continuará então durante o tempo de permanências desses íons em alta concentração no liquido sarcoplasmático. Todavia, uma bomba de cálcio continuamente ativa, localizada nas paredes dos tubos do retículo sarcoplasmático, bombeia os íons cálcio do liquido sarcoplasmático, trazendo-os de volta às cavidades vesiculares do retículo. Essa bomba pode aumentar a concentração de íons cálcio em cerca de 2.000 vezes, no interior do retículo, uma condição que permite o acúmulo de cálcio no retículo sarcoplasmático e que também determina uma deleção quase total desses íons no líquido das miofibrilas. Por essa razão, exceto imediatamente após um potencial de ação, a concentração dos íons cálcio nas miofibrilas é mantida a um nível extremamente baixo.

Mecanismo da catraca ou da cremalheira da contração

Ela mostra as cabeças de duas pontes cruzadas que se fixam e se soltam dos locais ativos de um filamento de actina. Postula-se que, quando a cabeça se prende a um local ativo, essa fixação causa simultaneamente profunda alteração nas forças intramoleculares na cabeça e no braço da ponte cruzada.. O novo alinhamento das forças faz com que a cabeça se incline sobre o braço, puxando junto consigo o filamento de actina. Essa inclinação da cabeça da ponte cruzada é denominada “força de deslocamento”. Imediatamente após a força de inclinação, a cabeça se solta automaticamente do local ativo e retorna à sua posição perpendicular normal. Nessa posição, ela se combina com um sítio ativo existente mais abaixo, ao longo do filamento de actina; uma inclinação similar novamente acontece para determinar então uma nova força de deslocamento, e o filamento de actina dá outro passo. Assim, as cabeças das pontes cruzadas inclinam-se para trás e para frente e, passo a passo, puxam os filamentos de actina em direção ao centro do filamento de miosina. Dessa maneira, os movimentos das pontes cruzadas usam os locais ativos do filamento de actina como se fosse os dentes de uma catraca.

CONTRAÇÃO MUSCULAR LISA

Base química da contração

O músculo liso contém filamentos tanto de actina como de miosina, que apresentam características semelhantes, mas não exatamente iguais àquelas dos filamentos de actina e miosina do músculo esquelético. O músculo liso contém também tropomiosina, mas é duvidosa a presença de troponina, ou de substâncias semelhantes a ela. A miosina e a actina interagem entre si da mesma forma que fazem quando provenientes do músculo esquelético. Além disso, o processo contrátil é ativado por íons cálcio e o ATP é degradado a ADP para fornecer energia para a contração. Por outro lado, há importantes entre a organização física do músculo liso e do esquelético, bem como diferenças em outros aspectos da função do músculo liso, tais como o acoplamento excitação-contração, o controle do processo contrátil pelos íons cálcio, a duração da contração e a quantidade de energia requerida para o processo contrátil.

Base física da contração do músculo liso

O músculo liso não apresenta a mesma distribuição estriada dos filamentos de actina e miosina que é encontrado no músculo esquelético. Grande número de filamentos de actina estão aderidos aos denominados corpúsculos densos. Alguns desses corpúsculos, por sua vez, estão fixados a membrana celular, enquanto outros estão dispersos no sarcoplasma. Parece haver suficientes ligações cruzadas entre um corpúsculo denso e outro, de modo a mantê-los em posições extremamente fixas dentro da célula.

Apesar da relativa pobreza dos filamentos de miosina, afirmou-se que os mesmos têm suficientes pontes cruzadas para atrair os numerosos filamentos de actina, causando contração pelo mecanismo de deslizamento dos filamentos, da mesma forma que nos músculo esquelético.

Acoplamento Excitação-Contração – Papel dos Íons Cálcio

No músculo liso, assim como no esquelético, o processo de contração também é derivado pelos íons cálcio. Todavia, a fonte de íons cálcio é diferente porque o retículo sarcoplasmático desse músculo é pouco desenvolvido em contraste com aquele do músculo esquelético. Em alguns tipos de músculo liso, a maior parte dos íons cálcio que causa a contração entra na fibra muscular a partir do líquido extracelular e o potencial de ação é causado, pelo menos em parte, pelo influxo de íons cálcio para o interior da fibra muscular. Devido ao fato de as fibras musculares lisas serem muito pequenas, este íons cálcio podem se difundir para todas as partes do músculo liso e determinar o processo contrátil.

Bombas de Cálcio

Para determinar o relaxamento dos elementos contráteis do músculo liso, é necessário remover os íons cálcio. Essa remoção é obtida através de uma bomba de cálcio que transporta esses íons para o exterior da fibra muscular lisa e de volta para o líquido extracelular, ou bombeia os íons cálcio para o interior do retículo sarcoplasmático. Todavia, essa bomba apresenta uma ação muito lenta em comparação a bomba do músculo esquelético. Dessa maneira, a contração do músculo liso tem uma duração maior que a do músculo esquelético, já que a concentração dos íons cálcio permanecerá mais tempo nas miofibrilas.

Mecanismo pelo qual os íons cálcio determinam a contração do músculo liso

No músculo esquelético, os íons cálcio ativam a contração pela combinação com a troponina. Isso, por sua vez, causa alteração na tropomiosina, seguida da ativação do filamento de actina, e finalmente, o próprio processo de contração. Entretanto como não há a presença de troponina nas células musculares lisas, os íons cálcio aumentam bastante a atividade ATPásica das cabeças das pontes cruzadas de miosina. No músculo esquelético, essa ativação pelo cálcio é baixa, mas no músculo liso, ela ocorre mesmo em concentrações muito baixa de cálcio.

Assim, acredita-se que esta ativação do sistema ATPásico de miosina inicie a contração do músculo liso. Isto é, a ATPase começa a desdobrar ATP; a energia liberada, põe em ação o processo contrátil, sem que o complexo troponina-tropomiosina estejam envolvidos.

CONTRAÇÃO DO MÚSCULO LISO SEM POTENCIAIS DE AÇÃO – EFEITO DE FATORES TECIDUAIS LOCAIS E DE HORMÔNIOS.

A contração do músculo liso pode se iniciar não somente por potenciais de ação, mas também por fatores estimuladores que atuam diretamente na maquinaria contrátil.

Os dois tipos de fatores estimuladores com mais freqüência envolvidos são:

Efeitos de hormônios na contração do músculo liso:

A maior parte dos hormônios circulantes no organismo afetam, pelo menos em algum grau, a contração do músculo liso, sendo que alguns têm efeitos muito intensos. Alguns dos mais importantes hormônios são norepinefrina, epinefrina, acetilcolina, angiotensiva, vasopressina, ocitocina, serotonina e histamina. Um hormônio causará contração do músculo liso quando suas células contiverem um receptor inibitório ao invés de excitatório. Assim sendo, a maioria dos hormônios causará excitação em alguns músculos lisos, mas inibição em outros. Alguns dos hormônios – em especial norepinefrina, vasopressina e angiotensina – têm efeito excitatório tão poderoso que podem causar e manter espasmo do músculo liso durante horas.

Mecanismo da excitação muscular de fatores teciduais locais e hormônios

Acredita-se que os fatores teciduais locais e hormônios que determinam a contração do músculo liso atuem assim ativando o mecanismo de cálcio para o controle do processo contrátil. Alguns desses fatores alteram de forma moderada o potencial da membrana sem necessariamente causar um potencial de ação e isto aumenta o fluxo de íons cálcio para o interior da célula. Entretanto, a maior parte deles pode ativar a contração, mesmo quando o potencial da membrana não é alterado e mesmo quando não há disponibilidade de íons cálcio para entrar na célula.

Nessas circunstâncias, os íons cálcio são liberados provavelmente pelo retículo sarcoplasmático.

Antagonismo muscular

Os músculos que realizam um movimento desejado são chamadas de agonistas e os que executam o movimento contrário são chamados de antangonistas ou opositores. Para que ocorra um movimento é necessário uma ação conjunta de músculos se relaxando enquanto outros se contraem.

Por exemplo: o bíceps, quando se contrai, faz a flexão do ante-braço sobre o braço. Mas para isso, o tríceps (antagonista) deve se relaxar. Para a extenção, o tríceps se contrai, enquanto o bíceps se relaxa.

Observações importantes:

1- Os músculos estriados dos mamíferos (e, com freqüência, das aves)

São vermelhos devido à presença abundante de um pigmento respiratório chamado mioglobina, bastante semelhante à hemoglobina e também transportador de oxigênio [ara a intimidade das fibras musculares. A carne branca do peito das aves não voadoras é formada de musculatura estriada pobre em mioglobina. Mas os músculos da coxa (que são muito solicitados nestas aves) são vermelhos e ricos em mioglobina. Compreende-se, portanto, que a quantidade desse pigmento (nas espécies que o possuem) é proporcional ao grau de atividade de cada músculo. Assim, você distingue a carne branca (peito) da carne escura (coxa), nas aves.

2- Diafragma

Principal músculo respiratório, entre o tórax e abdome.

3- Intercostais

Auxiliam na respiração, entre as costelas.

4- Músculos adutores

São os que aproximam segmentos do eixo corporal médio.

Exemplo: grande peitoral, desenvolvido em halterofilistas; nas aves é importante no vôo (fechar as asas).

5- Músculos abdutores

São os que afastam segmentos do eixo corporal médio.

Exemplo: músculo deltóide, utilizado para injeção.

6- Esternocleidomastoideo

Músculo rotador da cabeça.

7- Masseter

Músculo mastigador, desenvolvido em roedores.

8- Orbicular dos lábios

Músculo do assovio.

9- Bucinador

Músculo do sopro.

 

ESTRUTURA DE UM MÚSCULO

Mioblastos (células musculares)
Miotubos
Fibras musculares
Fascículos
Músculo

Classificação dos músculos

Músculo esquelético ou estriado
Músculo liso
Músculo estriado cardíaco

Músculo esquelético estriado

Sistema Muscular

Músculo liso

sistem12

Músculo estriado cardíaco

Sistema Muscular

MÚSCULOS ESQUELÉTICOS

Compõe o Sistema músculo-esquelético ou Aparelho Locomotor

Características Gerais

Endomísio: Bainha de tecido conectivo que reveste a fibra muscular.
Perimísio:
Bainha de tecido conectivo que reveste os fascículos.
Epimísio:
Bainha de tecido conectivo que reveste o músculo como um todo podendo se fundir à fascia.

Sistema Muscular

Rony Inácio

 

 

Fonte: www.cmjf.com.br/www.icb.ufmg.br/www.corpohumano.hpg.ig.com.br/www.universitario.com.br/www.biomania.com.br/ www.fes.br

Conteúdo Relacionado

 

Veja também

Escroto

Definição O escroto (ou saco escrotal) é uma parte da genitália externa masculina localizada atrás e embaixo …

Nervo Facial

PUBLICIDADE Definição do Nervo Facial O nervo facial é o sétimo nervo craniano. É um nervo misto …

Nervos Cranianos

PUBLICIDADE Definição Os nervos cranianos são 12 pares de nervos que podem ser vistos na superfície ventral …

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios são marcados com *

Time limit is exhausted. Please reload the CAPTCHA.

300-209 exam 70-461 exam hp0-s41 dumps 640-916 exam 200-125 dumps 200-105 dumps 100-105 dumps 210-260 dumps 300-101 dumps 300-206 dumps 400-201 dumps Professor Messer's CompTIA N10-006 exam Network+