Breaking News
QUESTION 1 You have a hybrid Exchange Server 2016 organization. Some of the mailboxes in the research department are hosted on-premises. Other mailboxes in the research department are stored in Microsoft Office 365. You need to search the mailboxes in the research department for email messages that contain a specific keyword in the message body. What should you do? A. From the Exchange Online Exchange admin center, search the delivery reports. B. Form the on-premises Exchange center, search the delivery reports. C. From the Exchange Online Exchange admin SY0-401 exam center, create a new In-Place eDiscovery & Hold. D. From the Office 365 Compliance Center, create a new Compliance Search. E. From the on-premises Exchange admin center, create a new In-Place eDiscovery & Hold. Correct Answer: E QUESTION 2 You have an Exchange Server 2016 organization. You plan to enable Federated Sharing. You need to create a DNS record to store the Application Identifier (AppID) of the domain for the federated trust. Which type of record should you create? A. A B. CNAME C. SRV D. TXT Correct Answer: D QUESTION 3 Your company has an Exchange Server 2016 200-310 exam Organization. The organization has a four- node database availability group (DAG) that spans two data centers. Each data center is configured as a separate Active Directory site. The data centers connect to each other by using a high-speed WAN link. Each data center connects directly to the Internet and has a scoped Send connector configured. The company's public DNS zone contains one MX record. You need to ensure that if an Internet link becomes unavailable in one data center, email messages destined to external recipients can 400-101 exam be routed through the other data center. What should you do? A. Create an MX record in the internal DNS zone B. B. Clear the Scoped Send Connector check box C. Create a Receive connector in each data center. D. Clear the Proxy through Client Access server check box Correct Answer: AQUESTION 4 Your network contains a single Active Directory forest. The forest contains two sites named Site1 and Site2. You have an Exchange Server 2016 organization. The organization contains two servers in each site. You have a database availability group (DAG) that spans both sites. The file share witness is in Site1. If a power failure occurs at Site1, you plan to mount the databases in Site2. When the power is restored in Site1, you Cisco CCNP Security 300-207 exam SITCS need to prevent the databases from mounting in Site1. What should you do? A. Disable AutoReseed for the DAG. B. Implement an alternate file share witness. C. Configure Datacenter Activation Coordination (DAC) mode. D. Force a rediscovery of the EX200 exam network when the power is restored. Correct Answer: C QUESTION 5 A new company has the following: Two offices that connect to each other by using a low-latency WAN link In each office, a data center that is configured as a separate subnet Five hundred users in each office You plan to deploy Exchange Server 2016 to the network. You need to recommend which Active Directory deployment to use to support the Exchange Server 2016 deployment What is the best recommendation to achieve the goal? A. Deploy two forests that each contains one site and one site link. Deploy two domain controllers to each forest. In each forest configure one domain controller as a global catalog server B. Deploy one forest that contains one site and one site link. Deploy four domain controllers. Configure all of the domain controllers as global catalog servers. C. Deploy one forest that contains two sites and two site links. Deploy two domain controllers to each site in each site, configure one domain controller as a global catalog server D. Deploy one forest that contains two sites and one site link. Deploy two domain controllers to each site. Configure both domain controllers as global catalog servers Correct Answer: C QUESTION 6 How is the IBM Content Template Catalog delivered for installation? A. as an EXE file B. as a ZIP file of XML files C. as a Web Appli cati on Archive file D. as a Portal Application Archive file Correct Answer: D QUESTION 7 Your company has a data center. The data center contains a server that has Exchange Server 2016 and the Mailbox server role installed. Outlook 300-101 exam anywhere clients connect to the Mailbox server by using thename outlook.contoso.com. The company plans to open a second data center and to provision a database availability group (DAG) that spans both data centers. You need to ensure that Outlook Anywhere clients can connect if one of the data centers becomes unavailable. What should you add to DNS? A. one A record B. two TXT records C. two SRV records D. one MX record Correct Answer: A QUESTION 8 You have an Exchange Server 2016 EX300 exam organization. The organization contains a database availability group (DAG). You need to identify the number of transaction logs that are in replay queue. Which cmdlet should you use? A. Test-ServiceHealth B. Test-ReplicationHealth C. Get-DatabaseAvailabilityGroup D. Get-MailboxDatabaseCopyStatus Correct Answer: D QUESTION 9 All users access their email by using Microsoft Outlook 2013 From Performance Monitor, you discover that the MSExchange Database\I/O Database Reads Average Latency counter displays values that are higher than normal You need to identify the impact of the high counter values on user connections in the Exchange Server organization. What are two client connections 400-051 exam that will meet performance? A. Outlook on the web B. IMAP4 clients C. mobile devices using Exchange ActiveSync D. Outlook in Cached Exchange ModeE. Outlook in Online Mode Correct Answer: CE QUESTION 10 You work for a company named Litware, Inc. that hosts all email in Exchange Online. A user named User1 sends an email message to an Pass CISCO 300-115 exam - test questions external user User 1 discovers that the email message is delayed for two hours before being delivered. The external user sends you the message header of the delayed message You need to identify which host in the message path is responsible for the delivery delay. What should you do? A. Review the contents of the protocol logs. B. Search the message tracking logs. C. Search the delivery reports 200-355 exam for the message D. Review the contents of the application log E. Input the message header to the Exchange Remote Connectivity Analyzer Correct Answer: E QUESTION 11 You have an Exchange Server 2016 organization. The organization contains three Mailbox servers. The servers are configured as shown in the following table You have distribution group named Group1. Group1 contains three members. The members are configured as shown in the following table. You discover that when User1 sends email messages to Group1, all of the messages are delivered to EX02 first. You need to identify why the email messages sent to Group1 are sent to EX02 instead. What should you identify? A. EX02 is configured as an expansion server. B. The arbitration mailbox is hosted 300-320 exam on EX02.C. Site2 has universal group membership caching enabled. D. Site2 is configured as a hub site. Correct Answer: A
Home / Física / Circuitos Elétricos

Circuitos Elétricos

PUBLICIDADE

Circuitos Elétricos
Benjamin Franklin (1706 – 1790)

A corrente elétrica é formada por elétrons livres em movimento organizado. A energia elétrica transportada pela corrente nada mais é do que a energia cinética dos elétrons. Assim, nos circuitos elétricos, a energia cinética dos elétrons livres pode transformar-se em energia luminosa ou em energia cinética dos motores, por exemplo.

Circuitos Elétricos

Ao percorrer o circuito, do pólo negativo da pilha até o pólo positivo, os elétrons livres perdem totalmente a energia que transportavam. E sem a reposição dessa energia não seria possível a permanência de uma corrente elétrica.

A função de uma pilha é, portanto, fornecer a energia necessária aos elétrons livres do fio, para que eles permaneçam em movimento.

Dentro da pilha, os elétrons adquirem energia ao serem levados do pólo positivo ao negativo. Ao chegarem ao pólo negativo, movimentam-se novamente pela parte externa do circuito até alcançarem o pólo positivo, e assim sucessivamente.

Circuitos Elétricos

Ao levar um certo número de elétrons do pólo positivo para o negativo, a pilha cede a eles uma certa quantidade de energia. O valor da energia que esses elétrons recebem, dividido pela quantidade de carga que eles têm, é a tensão elétrica existente entre os pólos da pilha. Nas pilhas comuns, esse valor é 1,5 volt.

Circuitos Elétricos

Em geral, um circuito elétrico é constituído por um conjunto de componentes ligados uns aos outros e conectados aos pólos de um gerador. Uma bateria de carro ou uma pilha, pode funcionar como gerador

Fonte: geocities.yahoo.com.br

Circuitos Elétricos

Estrutura de uma lanterna elétrica

Ö Por que o projetista escolheu essa particular combinação de materiais?

As partes metálicas da lanterna são postas para conduzir a corrente elétrica quando a lanterna é posta para funcionar e, além disso, foram escolhidas para resistirem aos esforços físicos aos quais são submetidas.

A mola metálica, por exemplo, não só permite caminho elétrico para a corrente como também mantém no lugar, sob pressão, as pilhas em seu interior. As partes metálicas do interruptor têm que garantir bom contato elétrico e não ficarem danificadas pelo uso contínuo.

Uma lanterna também tem partes feitas com material não condutor de corrente elétrica, tais como plásticos e borrachas. A cobertura de plástico dessa lanterna é um isolante elétrico. Sua forma é importante para que se tenha um manuseio cômodo. Sua cor a tornará mais ou menos atraente aos olhos do usuário.

Como você verá, os circuitos elétricos conterão sempre partes que conduzem e partes que não conduzem correntes elétricas. O segredo todo, nos circuitos elétricos, é delimitar um caminho pré planejado para a corrente.

A lâmpada incandescente e o refletor compõem o sistema óptica da lanterna. A posição da lâmpada dentro do refletor deve ser tal que permita a obtenção de um feixe estreito de luz.

Uma lanterna é um produto elétrico simples, mas muita gente já perdeu noites de sono em seus projetos para que você tenha um dispositivo que trabalhe bem.

Ö Você pode pensar em alguma outra coisa que o projetista deva levar em consideração na produção em massa de lanternas?

Um modo “mais científico” para descrever uma lanterna implica no uso de um diagrama de circuito. Nele, as partes relevantes da lanterna serão representadas através de símbolos:

Circuitos Elétricos

Diagrama de circuito de uma lanterna elétrica

Nesse circuito foram representadas simbolicamente, duas células voltaicas (pilhas) ¾ formando uma bateria ¾, um interruptor e uma lâmpada incandescente. As linhas no diagrama representam condutores metálicos (fios) que conectam as partes entre si formando o circuito completo.

Um circuito elétrico é necessariamente um percurso fechado. Na lanterna, o fechamento do interruptor completa o circuito, permitindo a passagem da corrente elétrica.

Lanternas às vezes falham! Isso acontece quando as partes metálicas do interruptor ou da lâmpada não entram efetivamente em contato (devido à sujeiras ou ferrugens), quando a lâmpada “queima” (interrupção em seu filamento) ou quando as pilhas “pifam” (esgotam suas energias químicas armazenadas, popularmente, ficam ‘descarregadas’). Em qualquer um desses casos, o circuito estará incompleto.

Corrente elétrica

Uma corrente elétrica é um fluxo ordenado de partículas carregadas (partículas dotadas de carga elétrica). Em um fio de cobre, a corrente elétrica é formada por minúsculas partículas dotadas de carga elétrica negativa, denominadas elétrons — eles são os portadores da carga elétrica.

No fio de cobre (ou de qualquer outro metal) os elétrons naturalmente lá existentes vagueiam desordenadamente (têm sentidos de movimentos aleatórios) até que, por alguma ordem externa, alguns deles passam a caminhar ordenadamente (todos no mesmo sentido) constituindo a corrente elétrica. A intensidade dessa corrente elétrica vai depender de quantos desses portadores, em movimento bem organizado passam, por segundo, por um região desse fio.

A corrente elétrica, num circuito, é representada pela letra I e sua intensidade poderá ser expressa em ampères (símbolo A), em miliampères (símbolo mA) ou outros submúltiplos tal qual o microampères (símbolo mA).

Um ampère (1 A) é uma intensidade de corrente elétrica que indica a passagem de 6,2×1018 elétrons, a cada segundo, em qualquer seção do fio. Esses 6,2×1018 elétrons (uma quantidade que escapa ao nosso pensamento) transportam uma carga elétrica total cujo valor é de um coulomb (1 C). ‘coulomb'(símbolo C) é a unidade com que se medem as quantidades de cargas elétricas.

Se indicarmos a quantidade total de carga elétrica que passa pela seção de um fio por Q (medida em coulombs) e o intervalo de tempo que ela leva para passar por essa seção por Dt (medido em segundos), a intensidade de corrente elétrica I (medida em ampères) será calculada por:

I = Q : Dt

CONVERSÕES

1 A = 1 000 mA = 1 000 000 mA Þ 1 A = 103 mA = 106 mA

1 mA = 1/1 000 A = 1 000 mA Þ 1 mA = 10-3 A = 103 mA

1 mA = 1/1 000 000 A = 1/1000 mA Þ 1 mA = 10-6 A = 10-3 mA

Circuito de uma lanterna de mão

Você alguma vez já desmontou complemente uma lanterna de mão para analisar como ela funciona?
Veja na ilustração abaixo como são dispostas as várias partes de uma típica lanterna de mão:

Circuitos Elétricos

Fonte: www.feiradeciencias.com.br

Circuitos Elétricos

Teoria de Circuitos

Desenvolvida a partir de medidas experimentais dos fenômenos elétricos.

Atualmente, pode ser vista como uma simplificação da Teoria Eletromagnética (Leis de Maxwell).

É apresentada como concebida por Kirchhoff.

Conceitos fundamentais: corrente e tensão elétricas.

Bipolo

Dispositivo contendo 2 terminais condutores

Bipolo

A cada bipolo estão associadas uma corrente (que o atravessa) e uma tensão (entre seus terminais).

Fontes de tensão dependentes

Bipolo cuja tensão entre os terminais não depende da corrente que o atravessa, mas sim da tensão ou corrente em um outro bipolo.

Circuitos Elétricos

Fontes de corrente dependentes

Bipolo cuja corrente que o atravessa não depende da tensão entre seus terminais, mas sim da tensão ou corrente em um outro bipolo.

Circuitos Elétricos

Exemplo: Modelo de transistor com emissor comum

Circuitos Elétricos

LEI DAS CORRENTES

Um ponto de ligação entre 2 ou mais bipolos.

Lei das Correntes ou 1 Lei de Kirchhoff

A soma algébrica das correntes que saem de um nó é nula.

Para um circuito com n nós, pode-se escrever n-1 equações de corrente independentes.

Circuitos Elétricos

Circuitos Elétricos

Circuitos Elétricos(redundante)

Circuitos Elétricos

Circuitos Elétricos

Circuitos Lineares de 1a. Ordem

Um circuito sem fontes independentes é chamado autônomo.

Considere o circuito abaixo, com a tensão inicial Circuitos Elétricosno capacitor

Circuitos Elétricos
A condição inicial Circuitos Elétricosno capacitor corresponde a uma carga armazenada Circuitos Elétricose a uma energia armazenada Circuitos Elétricos.

Circuitos Elétricos

Circuitos Elétricos

Circuitos Elétricos

A tensão v é uma variável de estado neste circuito. Com a condição inicial Circuitos Elétricosconhecida, todas as tensões e correntes no circuito podem ser obtidas, para t>0, a partir de Circuitos Elétricos(solução da equação diferencial).

A equação diferencial e sua condição inicial Circuitos Elétricosdeterminam univocamente a forma de onda (ou “trajetória”) . Circuitos Elétricos

Circuitos Lineares de 2a. Ordem Autônomo

Um circuito de 2a. ordem é descrito por uma equação diferencial linear ordinária de segunda ordem, homogênea, com coeficientes constantes.

Exemplo: Considere o circuito autônomo de segunda ordem (dois armazenadores de energia) com L=1 H,Circuitos Elétricos, Circuitos Elétricos , Ã eCircuitos Elétricos Ã. Determine Circuitos Elétricose Circuitos Elétricos, t>0.

Circuitos Elétricos

Equacionando

Circuitos Elétricos

Portanto

Circuitos Elétricos

Circuitos Elétricos

Circuitos Elétricos

Circuitos de 2a. Ordem Autônomos

As tensões nos capacitores e as correntes nos indutores de um circuito são denominadas variáveis de estado.

As equações de um circuito podem ser escritas apenas em função de suas variáveis de estado.

Circuitos Elétricos

Escrevendo as equações diretamente em v e i:

Circuitos Elétricos

Circuitos Elétricos

O uso do operador simbólico p facilita a obtenção de uma equação diferencial envolvendo apenas uma das variáveis.

Circuitos Elétricos

Fonte: www.dt.fee.unicamp.br

Circuitos Elétricos

Circuito de uma lanterna de mão

Você alguma vez já desmontou complemente uma lanterna de mão para analisar como ela funciona?
Veja na ilustração abaixo como são dispostas as várias partes de uma típica lanterna de mão:

Circuitos Elétricos

Estrutura de uma lanterna elétrica

Ö Por que o projetista escolheu essa particular combinação de materiais?

As partes metálicas da lanterna são postas para conduzir a corrente elétrica quando a lanterna é posta para funcionar e, além disso, foram escolhidas para resistirem aos esforços físicos aos quais são submetidas.

A mola metálica, por exemplo, não só permite caminho elétrico para a corrente como também mantém no lugar, sob pressão, as pilhas em seu interior. As partes metálicas do interruptor têm que garantir bom contato elétrico e não ficarem danificadas pelo uso contínuo.

Uma lanterna também tem partes feitas com material não condutor de corrente elétrica, tais como plásticos e borrachas. A cobertura de plástico dessa lanterna é um isolante elétrico. Sua forma é importante para que se tenha um manuseio cômodo. Sua cor a tornará mais ou menos atraente aos olhos do usuário.

Como você verá, os circuitos elétricos conterão sempre partes que conduzem e partes que não conduzem correntes elétricas. O segredo todo, nos circuitos elétricos, é delimitar um caminho pré planejado para a corrente.

A lâmpada incandescente e o refletor compõem o sistema óptica da lanterna. A posição da lâmpada dentro do refletor deve ser tal que permita a obtenção de um feixe estreito de luz.

Uma lanterna é um produto elétrico simples, mas muita gente já perdeu noites de sono em seus projetos para que você tenha um dispositivo que trabalhe bem.

Ö Você pode pensar em alguma outra coisa que o projetista deva levar em consideração na produção em massa de lanternas?

Um modo “mais científico” para descrever uma lanterna implica no uso de um diagrama de circuito. Nele, as partes relevantes da lanterna serão representadas através de símbolos:

Circuitos Elétricos

Diagrama de circuito de uma lanterna elétrica

Nesse circuito foram representadas simbolicamente, duas células voltaicas (pilhas) ¾ formando uma bateria ¾, um interruptor e uma lâmpada incandescente. As linhas no diagrama representam condutores metálicos (fios) que conectam as partes entre si formando o circuito completo.

Um circuito elétrico é necessariamente um percurso fechado. Na lanterna, o fechamento do interruptor completa o circuito, permitindo a passagem da corrente elétrica.

Lanternas às vezes falham! Isso acontece quando as partes metálicas do interruptor ou da lâmpada não entram efetivamente em contato (devido à sujeiras ou ferrugens), quando a lâmpada “queima” (interrupção em seu filamento) ou quando as pilhas “pifam” (esgotam suas energias químicas armazenadas, popularmente, ficam ‘descarregadas’). Em qualquer um desses casos, o circuito estará incompleto.

Corrente elétrica

Uma corrente elétrica é um fluxo ordenado de partículas carregadas (partículas dotadas de carga elétrica). Em um fio de cobre, a corrente elétrica é formada por minúsculas partículas dotadas de carga elétrica negativa, denominadas elétrons — eles são os portadores da carga elétrica.

No fio de cobre (ou de qualquer outro metal) os elétrons naturalmente lá existentes vagueiam desordenadamente (têm sentidos de movimentos aleatórios) até que, por alguma ordem externa, alguns deles passam a caminhar ordenadamente (todos no mesmo sentido) constituindo a corrente elétrica. A intensidade dessa corrente elétrica vai depender de quantos desses portadores, em movimento bem organizado passam, por segundo, por um região desse fio.

A corrente elétrica, num circuito, é representada pela letra I e sua intensidade poderá ser expressa em ampères (símbolo A), em miliampères (símbolo mA) ou outros submúltiplos tal qual o microampères (símbolo mA).

Um ampère (1 A) é uma intensidade de corrente elétrica que indica a passagem de 6,2×1018 elétrons, a cada segundo, em qualquer seção do fio. Esses 6,2×1018 elétrons (uma quantidade que escapa ao nosso pensamento) transportam uma carga elétrica total cujo valor é de um coulomb (1 C). ‘coulomb'(símbolo C) é a unidade com que se medem as quantidades de cargas elétricas.

Se indicarmos a quantidade total de carga elétrica que passa pela seção de um fio por Q (medida em coulombs) e o intervalo de tempo que ela leva para passar por essa seção por Dt (medido em segundos), a intensidade de corrente elétrica I (medida em ampères) será calculada por:

I = Q : Dt

CONVERSÕES

1 A = 1 000 mA = 1 000 000 mA Þ 1 A = 103 mA = 106 mA

1 mA = 1/1 000 A = 1 000 mA Þ 1 mA = 10-3 A = 103 mA

1 mA = 1/1 000 000 A = 1/1000 mA Þ 1 mA = 10-6 A = 10-3 mA

Fonte: www.feiradeciencias.com.br

Circuitos Elétricos

CIRCUITOS ELÉTRICOS E ELETRÔNICOS

A inventividade humana e o conhecimento progressivo da maneira como os materiais reagem à eletricidade propiciaram a elaboração de complexos sistemas de condução das cargas elétricas. Esse desenvolvimento levou a enormes avanços tecnológicos, nos quais o circuito elétrico teve participação fundamental.

Circuito elétrico ou eletrônico é um determinado agrupamento de componentes de comportamento elétrico bem definido e destinado à condução de cargas elétricas. Quando sua finalidade se relaciona à transmissão de potência, tais circuitos denominam-se elétricos; quando se destinam ao processamento de sinais elétricos, denominam-se eletrônicos. Os circuitos elétricos são também denominados circuitos de potência e freqüentemente se empregam associados a circuitos magnéticos. Por meio deles, pode-se transformar energia mecânica em energia elétrica e vice-versa, sendo muito utilizados em geradores e motores elétricos.

Leis e princípios matemáticos. O comportamento idealizado dos circuitos é descrito por meio de modelos matemáticos estudados na teoria das redes elétricas e eletrônicas, nas quais só se consideram as perdas de energia por dissipação, isto é, segundo o fenômeno de transformação da energia elétrica em energia térmica, de acordo com a lei de Joule. Nessa teoria os componentes ou elementos integrantes do circuito são analisados de um ponto de vista global e evita-se uma abordagem microscópica do material.

As variáveis elétricas mais utilizadas na descrição de tais circuitos são a tensão ou diferença de potencial, índice da energia elétrica que um ponto de um circuito possui em relação a outro ponto análogo; e a intensidade de corrente, que expressa a velocidade com que se deslocam as cargas elétricas. Para cada componente existe uma equação que relaciona a intensidade da corrente que circula através dele com a diferença de potencial existente entre seus extremos. Os componentes de um circuito se ligam de duas maneiras distintas: em série, quando a intensidade de corrente que circula entre seus elementos é a mesma; e em paralelo, quando a diferença de potencial entre todos os pontos terminais de seus elementos se mantém constante.

A análise de um circuito utiliza tais equações e as leis de Kirchhoff. A primeira lei de Kirchhoff sustenta que em um nó – ponto em que confluem três ou mais ramificações de uma rede ou circuito complexo – a soma das intensidades de corrente de todas as ramificações é zero. A segunda enuncia o princípio segundo o qual a soma de todas as diferenças de potencial ao longo de qualquer malha – conjunto fechado de ramificações – também é nula.

Um problema matemático freqüentemente encontrado no estudo dos circuitos envolve o cálculo dos valores da tensão e da intensidade de corrente nos diferentes pontos de circulação, uma vez conhecidos seus valores iniciais e as fontes geradoras da tensão ou força eletromotriz. A resolução desse problema é facilitada com o auxílio dos teoremas de Thévenin e de Norton, que apresentam como artifício de cálculo a substituição de um dipolo, circuito com dois terminais, por outro mais simples, composto de um gerador e um componente eletricamente equivalente ao dipolo inicial.

Os métodos mais modernos da análise de circuitos baseiam-se no chamado cálculo operacional, capaz de transformar complexas equações integrais e diferenciais em equações algébricas, de resolução mais imediata, mediante a utilização de avançados conceitos matemáticos, tais como as transformadas de Fourier e Laplace e os números complexos, definidos como expressões do tipo a + bi, em que a e b são números reais e i2 = -1.

Tipos de circuito

Os circuitos são classificados de acordo com diversos critérios, como seu comportamento energético, as técnicas utilizadas em sua fabricação e o tipo de tensão a que são submetidos, se alternada ou contínua. Quanto ao comportamento energético, os circuitos elétricos ou eletrônicos se subdividem em ativos, quando são capazes de gerar energia, e passivos, quando absorvem a energia fornecida pelos circuitos ativos. São circuitos ativos os dos geradores, enquanto os das resistências, que dissipam energia elétrica em forma de calor, os das bobinas, que armazenam energia em forma de campo magnético, e os dos condensadores, que a acumulam em forma de campo elétrico, são exemplos de circuitos passivos.

São bastante diversificadas as funções exercidas pelos circuitos. Destacam-se os circuitos retificadores ou filtros, que selecionam sinais elétricos de acordo com sua freqüência, e os circuitos amplificadores, que aumentam a amplitude de um sinal. De especial importância para o avanço da informática foi o desenvolvimento dos circuitos designados como de comutação, entre eles os chamados flip-flop e os circuitos lógicos. No campo das comunicações são empregados circuitos tais como os geradores de dentes de serra, os moduladores, os detetores e conversores.

O desenvolvimento de materiais semicondutores, substâncias cristalinas de condutividade elétrica muito inferior à dos metais, permitiu a fabricação de novos componentes fundamentais na engenharia de circuitos, tais como os diodos e os transistores, além dos ditos circuitos integrados, pequenos módulos constituídos por grande número de componentes eletrônicos colocados sobre a superfície de uma lâmina ou pastilha.

Estes últimos foram os responsáveis pela miniaturização dos circuitos, a qual resultou em enorme diminuição tanto do preço como do consumo de energia, além de favorecer o aumento da velocidade e precisão com que os sinais elétricos são transmitidos e armazenados. Atualmente, pode-se integrar milhares de transistores em superfície de apenas quarenta milímetros quadrados, o que permite o processamento de sinais de amplitude mínima em comunicações, informática, reprodução de imagem e som etc.

Fonte: biomania.com

Conteúdo Relacionado

 

Veja também

Equações de Maxwell

Equações de Maxwell

PUBLICIDADE Quais são as Equações de Maxwell? As quatro Equações de Maxwell descrevem os campos …

Corrente Contínua

Corrente Contínua

PUBLICIDADE O que é corrente contínua? A corrente contínua (CC) é unidirecional, portanto o fluxo …

Espectro Eletromagnético

Espectro Eletromagnético

PUBLICIDADE Definição O espectro eletromagnético é uma faixa contínua de comprimentos de onda. Os tipos …

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios são marcados com *

Time limit is exhausted. Please reload the CAPTCHA.

300-209 exam 70-461 exam hp0-s41 dumps 640-916 exam 200-125 dumps 200-105 dumps 100-105 dumps 210-260 dumps 300-101 dumps 300-206 dumps 400-201 dumps Professor Messer's CompTIA N10-006 exam Network+