Breaking News
QUESTION 1 You have a hybrid Exchange Server 2016 organization. Some of the mailboxes in the research department are hosted on-premises. Other mailboxes in the research department are stored in Microsoft Office 365. You need to search the mailboxes in the research department for email messages that contain a specific keyword in the message body. What should you do? A. From the Exchange Online Exchange admin center, search the delivery reports. B. Form the on-premises Exchange center, search the delivery reports. C. From the Exchange Online Exchange admin SY0-401 exam center, create a new In-Place eDiscovery & Hold. D. From the Office 365 Compliance Center, create a new Compliance Search. E. From the on-premises Exchange admin center, create a new In-Place eDiscovery & Hold. Correct Answer: E QUESTION 2 You have an Exchange Server 2016 organization. You plan to enable Federated Sharing. You need to create a DNS record to store the Application Identifier (AppID) of the domain for the federated trust. Which type of record should you create? A. A B. CNAME C. SRV D. TXT Correct Answer: D QUESTION 3 Your company has an Exchange Server 2016 200-310 exam Organization. The organization has a four- node database availability group (DAG) that spans two data centers. Each data center is configured as a separate Active Directory site. The data centers connect to each other by using a high-speed WAN link. Each data center connects directly to the Internet and has a scoped Send connector configured. The company's public DNS zone contains one MX record. You need to ensure that if an Internet link becomes unavailable in one data center, email messages destined to external recipients can 400-101 exam be routed through the other data center. What should you do? A. Create an MX record in the internal DNS zone B. B. Clear the Scoped Send Connector check box C. Create a Receive connector in each data center. D. Clear the Proxy through Client Access server check box Correct Answer: AQUESTION 4 Your network contains a single Active Directory forest. The forest contains two sites named Site1 and Site2. You have an Exchange Server 2016 organization. The organization contains two servers in each site. You have a database availability group (DAG) that spans both sites. The file share witness is in Site1. If a power failure occurs at Site1, you plan to mount the databases in Site2. When the power is restored in Site1, you Cisco CCNP Security 300-207 exam SITCS need to prevent the databases from mounting in Site1. What should you do? A. Disable AutoReseed for the DAG. B. Implement an alternate file share witness. C. Configure Datacenter Activation Coordination (DAC) mode. D. Force a rediscovery of the EX200 exam network when the power is restored. Correct Answer: C QUESTION 5 A new company has the following: Two offices that connect to each other by using a low-latency WAN link In each office, a data center that is configured as a separate subnet Five hundred users in each office You plan to deploy Exchange Server 2016 to the network. You need to recommend which Active Directory deployment to use to support the Exchange Server 2016 deployment What is the best recommendation to achieve the goal? A. Deploy two forests that each contains one site and one site link. Deploy two domain controllers to each forest. In each forest configure one domain controller as a global catalog server B. Deploy one forest that contains one site and one site link. Deploy four domain controllers. Configure all of the domain controllers as global catalog servers. C. Deploy one forest that contains two sites and two site links. Deploy two domain controllers to each site in each site, configure one domain controller as a global catalog server D. Deploy one forest that contains two sites and one site link. Deploy two domain controllers to each site. Configure both domain controllers as global catalog servers Correct Answer: C QUESTION 6 How is the IBM Content Template Catalog delivered for installation? A. as an EXE file B. as a ZIP file of XML files C. as a Web Appli cati on Archive file D. as a Portal Application Archive file Correct Answer: D QUESTION 7 Your company has a data center. The data center contains a server that has Exchange Server 2016 and the Mailbox server role installed. Outlook 300-101 exam anywhere clients connect to the Mailbox server by using thename outlook.contoso.com. The company plans to open a second data center and to provision a database availability group (DAG) that spans both data centers. You need to ensure that Outlook Anywhere clients can connect if one of the data centers becomes unavailable. What should you add to DNS? A. one A record B. two TXT records C. two SRV records D. one MX record Correct Answer: A QUESTION 8 You have an Exchange Server 2016 EX300 exam organization. The organization contains a database availability group (DAG). You need to identify the number of transaction logs that are in replay queue. Which cmdlet should you use? A. Test-ServiceHealth B. Test-ReplicationHealth C. Get-DatabaseAvailabilityGroup D. Get-MailboxDatabaseCopyStatus Correct Answer: D QUESTION 9 All users access their email by using Microsoft Outlook 2013 From Performance Monitor, you discover that the MSExchange Database\I/O Database Reads Average Latency counter displays values that are higher than normal You need to identify the impact of the high counter values on user connections in the Exchange Server organization. What are two client connections 400-051 exam that will meet performance? A. Outlook on the web B. IMAP4 clients C. mobile devices using Exchange ActiveSync D. Outlook in Cached Exchange ModeE. Outlook in Online Mode Correct Answer: CE QUESTION 10 You work for a company named Litware, Inc. that hosts all email in Exchange Online. A user named User1 sends an email message to an Pass CISCO 300-115 exam - test questions external user User 1 discovers that the email message is delayed for two hours before being delivered. The external user sends you the message header of the delayed message You need to identify which host in the message path is responsible for the delivery delay. What should you do? A. Review the contents of the protocol logs. B. Search the message tracking logs. C. Search the delivery reports 200-355 exam for the message D. Review the contents of the application log E. Input the message header to the Exchange Remote Connectivity Analyzer Correct Answer: E QUESTION 11 You have an Exchange Server 2016 organization. The organization contains three Mailbox servers. The servers are configured as shown in the following table You have distribution group named Group1. Group1 contains three members. The members are configured as shown in the following table. You discover that when User1 sends email messages to Group1, all of the messages are delivered to EX02 first. You need to identify why the email messages sent to Group1 are sent to EX02 instead. What should you identify? A. EX02 is configured as an expansion server. B. The arbitration mailbox is hosted 300-320 exam on EX02.C. Site2 has universal group membership caching enabled. D. Site2 is configured as a hub site. Correct Answer: A
Home / Física / Supercondutividade

Supercondutividade

PUBLICIDADE

Uma das propriedades mais características dos materiais supercondutores é a levitação magnética, cientificamente denominada efeito Meissner, pela qual as forças do campo magnético gerado no interior desses materiais são repelidas por substâncias diamagnéticas. Ímãs colocados em suas proximidades se mantêm suspensos no ar a pequena distância de sua superfície.

Definição

Supercondutividade é a propriedade que apresentam certos materiais sólidos de perder bruscamente toda resistência à passagem da corrente elétrica quando resfriados abaixo de um ponto mínimo denominado temperatura de transição, ou temperatura crítica.

Essa temperatura varia conforme o material, mas em geral situa-se abaixo de 20 K (-253°C). Outra propriedade fundamental dos supercondutores é a capacidade de evitar a penetração em seu interior de campos magnéticos, ou seja, são materiais perfeitamente diamagnéticos.

O descobrimento da supercondutividade se deve ao holandês Heike Kamerlingh Onnes que, em 1911, enquanto trabalhava com amostras criogênicas de mercúrio metálico a temperaturas próximas do zero absoluto (0 K ou -273,13° C), nelas detectou um repentino desaparecimento da resistência à passagem da corrente elétrica.

A descoberta tem utilíssimas aplicações técnicas, pois permite reduzir consideravelmente as perdas que, devido ao aquecimento, sofrem os circuitos elétricos, decorrentes da resistência à corrente dos condutores normais.

Posteriormente, foram sucessivamente identificadas propriedades supercondutoras em 25 elementos químicos, entre eles o chumbo e o estanho, e milhares de ligas metálicas e compostos químicos.

A utilização industrial dos supercondutores, contudo, apresentava dificuldades de ordem prática, pois as temperaturas de transição para a supercondutividade, no caso dos materiais conhecidos, se situavam abaixo de 20 K.

Para obtê-las, era necessário empregar dispendiosos e pouco práticos tanques de hélio líquido. Alguns desses materiais — chamados supercondutores de tipo II — perdem suas propriedades e passam a um estado de condução normal quando expostos a campos magnéticos muito fortes, mesmo quando se mantém a temperatura bem abaixo do ponto de transição.

A supercondutividade foi explicada em 1957 como consequência do acoplamento de dois elétrons, partículas elementares de carga elétrica negativa responsáveis pela condução elétrica, que constituem os pares de Cooper.

Esses pares se movem nas superfícies dos microcristais da rede cristalina dos materiais supercondutores sem sofrerem colisões nem perturbações que reduzam a energia que transportam.

Até 1987 usavam-se os supercondutores principalmente para fazer fios condutores de correntes em magnetos supercondutores. Como os supercondutores só conservam suas propriedades a temperaturas muito baixas, era preciso refrigerar os magnetos a hélio líquido, processo caro e trabalhoso.

Foi então que surgiram os novos materiais — as cerâmicas e ligas supercondutoras, que mantêm a supercondutividade a temperaturas muito menos baixas e podem, portanto, ser resfriadas com um material bem mais abundante e barato, o nitrogênio líquido.

A partir de então, multiplicaram-se os estudos sobre os supercondutores e pesquisaram-se numerosos novos materiais capazes de manter a supercondutividade a temperaturas cada vez mais altas. No Brasil, o Instituto de Física da Universidade de São Paulo empenhou-se nessa pesquisa e em 1987 físicos de São Carlos SP chegaram a conseguir supercondutividade a -170°C.

A supercondutividade a temperaturas mais altas abre possibilidades imensas para a tecnologia, pois entre as principais vantagens oferecidas por dispositivos fabricados com supercondutores se incluem a baixa dissipação de calor, a grande velocidade de operação e a alta sensibilidade.

Com o avanço das pesquisas, pode vir a ser possível fabricar fios que transmitam eletricidade sem perda, baterias que não descarreguem, conexões entre pastilhas e placas de circuitos integrados que aumentem sua velocidade e reduzam o calor nos computadores, além de um sem-número de dispositivos até então impensáveis.

Em 1995, cientistas americanos criaram um novo tipo de material supercondutor, um filme capaz de conduzir cem vezes mais eletricidade do que qualquer material do gênero. Com capacidade para operar em fortes campos magnéticos, o novo material transporta um milhão de ampères por centímetro quadrado e é suficientemente flexível para ser conduzido através de cabos elétricos.

Fonte: biomania.com

Supercondutividade

Propriedades gerais de supercondutores

 A SC foi descoberta por Heike Kammerlingh Onnes em 1911.

(Onnes ganhou o premio Nobel de Física em 1913 por suas descobertas em fenômenos de baixas temperaturas, que levou a produção do helio líquido.)

Supercondutividade

Comportamento da resistência elétrica com a temperatura para um condutor normal e um supercondutor:

Supercondutividade

Para um SC a resistência cai abruptamente para zero abaixo de Tc enquanto para um condutor normal ela nunca se anula.

Efeito Meissner

Supercondutividade

Elementos Supercondutores

Supercondutividade

Equações de London

 Obtidas pelos irmãos London com base nas eqs. de Maxwell macroscópicas, para permitir explicar a supercondutividade e o efeito Meissner. Consideremos a equação de movimento para uma carga q de massa m na presença do campo elétrico E, sem dissipação:

Supercondutividade

A dens. de corrente e de nida como J = nqv onde n e a densidade volumétrica de cargas q. Supondo por simplicidade que n seja constante no tempo, podemos multiplicar toda a equação acima por nq para obter:

Supercondutividade

Considerando as equações de Maxwell macroscópicas:

Supercondutividade

Podemos calcular o rotacional de (2) para relacionar esta com a lei de Faraday (5):

Supercondutividade

Eliminando a derivada temporal camos com:

Supercondutividade

Lembrando que B = Ñ A, onde A e o vetor potencial magnético, podemos obter a relação de London entre a corrente e o potencial:

Supercondutividade

Esta última equação quebra a simetria de gauge eletromagnético, uma vez que para o regime invariante no tempo

SupercondutividadeSupercondutividade

Fonte: www.eletrica.ufpr.br

Supercondutividade

Introdução

Supercondutores são materiais que perdem a resistência à corrente elétrica quando estão abaixo de uma certa temperatura.

A compreensão dos complexos mecanismos que levam alguns materiais a se comportarem como supercondutores vem intrigando os cientistas há quase um século. Tudo começou com o trabalho de Heike Kamerlingh-Onnes[1], que em 1911 descobriu que o Hg podia transportar corrente elétrica sem nenhuma resistência aparente, como mostrado na Fig. 1. Além disso, esta corrente podia persistir por um tempo indefinido.

Onnes conseguiu esse feito trabalhando em seu laboratório de baixas temperaturas em Leiden na Holanda, onde alguns anos antes tinha conseguido liquefazer o hélio pela primeira vez. Ele deu o nome de supercondutividade ao estranho fenômeno.

A partir de então, o termo supercondutores vem sendo usado para denotar todos os materiais que, abaixo de uma certa temperatura crítica, Tc, perdem a resistência à passagem de corrente elétrica, além de apresentar outras propriedades.

Dois anos após a descoberta, em 1913, Onnes é agraciado com o prêmio Nobel de Física. Em seu discurso, ele observa ainda que o estado supercondutor podia ser destruído aplicando-se um campo magnético suficientemente grande.

Supercondutividade

A partir da descoberta inicial, a supercondutividade foi sendo procurada em vários materiais e, em especial, nos metais, que são naturalmente bons condutores de eletricidade. Em1929, o Tc recorde estava com o Nióbio em 9.25 K; em 1941 com a liga de Nióbio-Nitrogênio em 16 K; já em 1953 com a liga de Vanádio-Silício em 17.5 K; e daí por diante. Até 1986, o Tc recorde estava com a liga de Nióbio e Germânio em 23.2 K, quando então os supercondutores de alta temperatura foram descobertos.

A supercondutividade a baixas temperaturas descrita em 1957 pela teoria BCS, desenvolvida pelos cientistas americanos John Bardeen, Leon Cooper e John Schrieér. Em 1972, eles foram agraciados com o prêmio Nobel de Física em reconhecimento à importância desta teoria.

No entanto, mesmo sendo precisa na explicação da supercondutividade a baixas temperaturas em metais e ligas simples, a teoria BCS revelou-se ineficiente na descrição completa da supercondutividade a altas temperaturas, como nas cerâmicas supercondutoras descobertas na década de 80. A primeira delas, La2_xBaxCuO4 foi descoberta por Alex Müller e Georg Bednorz em 1986.

Essa descoberta foi de tal importância que mudou notadamente os rumos da supercondutividade. O fato mais marcante foi que a supercondutividade foi descoberta em um material até então considerado isolante, ou seja, que normalmente é um péssimo condutor de eletricidade. Até então, os cientistas não tinham considerado seriamente a possibilidade de um material como este ser um supercondutor, muito menos de ter um Tc maior que o dos metais.

No ano seguinte, Müller e Bednorz ganham o prêmio Nobel de Física pela descoberta. De 1987 até hoje, os cientistas passaram a procurar intensamente novas cerâmicas supercondutoras e dezenas delas foram descobertas elevando o valor recorde de Tc a incríveis 138 K para o composto Hg0.8Tl0.2Ba2Ca2Cu3O8.33, a pressão ambiente.

Em contrapartida, a procura de novos compostos metálicos supercondutores foi deixada de lado devido ao entusiasmo gerado com as possibilidades abertas com a descoberta dos supercondutores de alto Tc.

Em janeiro de 2001, a comunidade científica é sacudida novamente com a descoberta da supercondutividade no composto metálico MgB2, a 39.2 K. Nada menos que 16 K maior que qualquer composto metálico até então conhecido.

Para melhor apreciar a importância desta descoberta e como ela está revolucionando o estudo da supercondutividade, vamos entender com mais detalhes algumas características dos supercondutores e algumas de suas aplicações.

A. Supercondutores Tipo 1 e Tipo 2

Os supercondutores são divididos em dois tipos, de acordo com suas propriedades específicas:

Os supercondutores do Tipo 1 são formados principalmente pelos metais e por algumas ligas e, em geral, são condutores de eletricidade à temperatura ambiente.

Eles possuem um Tc extremamente baixo, que, segundo a teoria BCS, seria necessário para diminuir as vibrações dos átomos do cristal e permitir o fluxo sem dificuldades dos elétrons pelo material, produzindo assim a supercondutividade.

Os supercondutores desse tipo foram os primeiros a serem descobertos e os cientistas verificaram que a transição para o estado supercondutor a baixa temperatura tinha características peculiares: ela acontecia abruptamente, veja Fig. 2(a), e era acompanhada pelo efeito Meissner. Esse efeito, que talvez seja a característica mais famosa dos supercondutores, é a causa da levitação magnética de um ímã, por exemplo, quando é colocado sobre um pedaço de supercondutor.

A explicação para o fenômeno está na repulsão total dos campos magnéticos externos pelos supercondutores do Tipo 1, o que faz com que o campo magnético interno seja nulo, desde que o campo externo aplicado não seja muito intenso. A maioria dos materiais, como vidro, madeira e água, também repele campos magnéticos externos, o que faz com que o campo no interior deles seja diferente do campo externo aplicado.

Esse efeito é chamado de diamagnetismo e tem sua origem no movimento orbital dos elétrons ao redor dos átomos, que cria pequenos “loopings” de correntes. Elas, por sua vez, criam campos magnéticos, segundo as leis da eletricidade e magnetismo e, com a aplicação de campo magnético externo tendem a se alinhar de tal forma que se oponham ao campo aplicado.

No caso dos condutores, além do alinhamento do movimento orbital dos elétrons, correntes de blindagem são induzidas no material e cancelam parte do campo magnético no seu interior. Se considerarmos um condutor ideal, ou seja, que não apresenta resistência à corrente elétrica, o cancelamento do campo é total, caracterizando o chamado “diamagnetismo perfeito”. Nos supercondutores do Tipo 1, o cancelamento do campo magnético interno também é total, porém esse comportamento é distinto do diamagnetismo perfeito.

Como podemos ver na Fig. 3, os supercondutores do Tipo 1, no estado supercondutor, possuem campo magnético nulo no seu interior, mesmo no caso de o campo magnético externo ser diferente de zero antes da transição supercondutora, diferente do comportamento de um condutor ideal.

Supercondutividade

Supercondutividade

Praticamente todos os metais são supercondutores do Tipo 1, a temperaturas suficientemente baixas. Entre eles, temos (Tc em Kelvinentre parênteses): Pb (7.2), Hg (4.15), Al (1.175), Ti (0.4), U (0.2), W(0.0154), Rh (0.000325). Curiosamente os melhores condutores disponíveis, que são o ouro (Au), a prata (Ag) e o Cobre (Cu) não são supercondutores. Já os supercondutores do Tipo 2 são formados por ligas metálicas e outros compostos. As exceções são os metais puros, Vanádio (V), Tecnécio (Tc) e Nióbio (Nb). Em geral, as temperaturas críticas associadas a eles são muito mais altas que as dos supercondutores do Tipo 1, como é o caso das cerâmicas baseadas em óxidos de cobre.

No entanto, o mecanismo atômico que leva à supercondutividade neste tipo de supercondutor, até hoje não está completamente desvendado. O primeiro material supercondutor do Tipo 2 descoberto foi uma liga de chumbo e bismuto fabricada em 1930 por W. de Haase J. Voogd. Eles perceberam que a liga apresentava características distintas dos supercondutores convencionais, Tipo 1.

A transição para o estado supercondutor era gradual, com a presença de um estado intermediário, como está mostrado na Fig 2(b). Além disso, o efeito Meissner não era perfeito: o material permitia a penetração de algum campo magnético, de modo contrário aos supercondutores do Tipo 1. No estado intermediário, o supercondutor do Tipo 2 apresenta regiões no estado normal, cercada por regiões supercondutoras, como é mostrado na Fig. 4(a).

Essas regiões mistas, chamadas de vórtices, permitem a penetração de campo magnético no material, através dos núcleos normais. Conforme a temperatura aumenta, dentro do estado intermediário, os núcleos vão superando as regiões supercondutoras, como é mostrado na Fig. 4(b). Isso acontece até a perda completa do estado supercondutor, quando os núcleos normais se sobrepõem.  

Supercondutividade

Todos os supercondutores de alta temperatura pertencem ao Tipo 2, incluindo-se o recordista atual, que pertence à classe das cerâmicas baseadas em óxidos de cobre (cupretos). A seguir, enumeramos alguns destes compostos com seu respectivo Tc em Kelvin, entre parênteses: Hg0.8Tl0.2Ba2Ca2Cu3O8.33 (138), Bi2Sr2Ca2Cu3O10(115), Ca1-xSrxCuO2 (110), TmBa2Cu3O7 (101), YBa2Cu3O7+ (93), La1.85Ba.15CuO4 (35), CsC60(40), MgB2(39.2), Nb3Ge (23.2) e os metais Nb (9.25), Tc(7.8) e V (5.4). 

B. Teoria BCS

A teoria que viria a explicar satisfatoriamente a supercondutividade abaixas temperaturas, presente nos supercondutores do Tipo 1, apareceu somente em 1957, graças ao trabalho de John Bardeen, Leon Cooper e Robert Schrieffer.

Um ponto chave na teoria criada por eles é a formação de pares de elétrons, conhecidos como pares de Cooper, através de interações com oscilações da rede cristalina.

Esta teoria é conhecida hoje como teoria BCS, nome formado com as iniciais dos sobrenomes dos autores, que podem ser vistos na Fig. 5. Os elétrons, assim como todas as partículas com spin fracionário, são chamados de férmions e obedecem ao princípio de exclusão de Pauli, o qual proíbe que duas partículas ocupem o mesmo nível de energia.

No entanto, os pares de Cooper se comportam de maneira muito diferente do de elétrons isolados. Eles atuam como bósons, partículas de spin inteiro, podendo se condensar em um mesmo nível de energia.

Os pares de Cooper podem ser comparados a duas bolas de boliche nas bordas de um colchão de água, como mostrado na Fig 6. Conforme alguém empurra uma das bolas, o colchão se deforma e a deformação atrai a segunda bola.

Supercondutividade

Em suma, na teoria BCS, a atração entre pares de elétrons mediada por oscilações da rede cristalina é a responsável pela supercondutividade. Os pares de Cooper formam um condensado que flui sem resistência pelo material e atua expelindo campos magnéticos externos fracos, ocasionando o efeito Meissner. Uma discussão mais detalhada da teoria BCS e dos supercondutores do Tipo 1 pode ser encontrada no artigo de Ostermann et al.[5]

C. Supercondutores a altas temperaturas

Mesmo tendo muito sucesso na explicação da supercondutividade a baixas temperaturas, a teoria BCS não explica satisfatoriamente o fenômeno a altas temperaturas.

O primeiro material dessa classe foi descoberto 15 anos atrás e deixou a comunidade científica perplexa, pois a supercondutividade havia sido descoberta em cerâmicas, um material que geralmente é isolante, e o mais impressionante, em torno de 30 K.

Os descobridores, George Bednorz e Alex Müller [6], podem ser vistos na Fig. 7. A descoberta se tornou ainda mais surpreendente quando, em novembro de 1986, Paul Chu da Universidade de Houston e Mang-Kang Wu da Universidade do Alabama, descobriram que o YBa2Cu3O7, simbolizado por YBCO e mostrado na Fig. 8, com sua estrutura de camadas, superconduzia a 93 K, ou seja, a temperaturas superiores à temperatura do nitrogênio líquido (77K).

Ficou claro naquele ano que uma revolução na Física havia começado. No ano seguinte, em uma sessão especial da reunião de março da Sociedade Americana de Física em Nova Iorque, ocorreu a celebração do começo da nova era da supercondutividade.

Este evento, que ficou conhecido como o “Woodstock” da Física, reuniu mais de 3000 pessoas na sala de apresentação principal, com outras 3000 pessoas assistindo em circuito de televisão fechado, do lado de fora.

Nos anos seguintes, várias outras cerâmicas supercondutoras foram descobertas, todas baseadas em óxidos de cobre, incluindo aquelas com tálio e mercúrio que hoje apresentam as maiores temperaturas críticas.

Supercondutividade

Supercondutividade

II Aplicações de supercondutores

Os supercondutores são materiais muito interessantes para uso em várias aplicações devido às suas propriedades peculiares.

A maioria das suas aplicações se vale da resistividade nula, que em alguns aparelhos elétricos é sinônimo de eficiência máxima, como é o caso dos geradores de eletricidade e dos cabos de transmissão, que não têm perda de energia elétrica por calor. Outras aplicações se valem dos altos campos magnéticos que podem ser obtidos e cientemente com magnetos supercondutores.

Os aparelhos de ressonância magnética, por exemplo, assim como os trens flutuantes (Maglev) e alguns aparelhos utilizados no estudo de materias utilizam estes campos. As outras aplicações mais comuns se valem do efeito Meissner.

A. Produção e transmissão de eletricidade

Uma aplicação ideal para os supercondutores seria a transmissão de energia elétrica das estações geradoras para as cidades.

Entretanto, isso está longe de ser economicamente viável devido ao alto custo e à dificuldade técnica de se refrigerar vários quilômetros de cabos supercondutores a temperaturas criogênicas, embora cabos de até 45 metros possam ser encontrados em utilização.

Cabos de 120 metros, capazes de transportar 100 milhões de watts estão sendo construídos pela empresa americana Pirelli Wire e devem entrar em operação brevemente em uma subestação em Frisbie, Detroit. Na Fig. 9, podemos ver um cabo BSCCO (Bi2Sr2CaCu2O9) resfriado com nitrogênio líquido.

Já a construção e utilização de geradores de eletricidade em usinas geradoras têm grande potencial. Como a e_ciência desses geradores é maior que 99% e seu tamanho é a metade daquele dos geradores convencionais feitos de cobre, eles são muito atrativos e várias empresas têm planos para construí-los. A empresa americana General Eletric é uma delas e está atualmente desenvolvendo um protótipo capaz de gerar 100 MVA (megawatt-ampere).

Supercondutividade

Além de produzir e transmitir eletricidade, os supercondutores podem também ser usados para armazená-la. Existem dois tipos principais de baterias que podem ser construídas.

O primeiro tipo é o das SMES (super-conducting magnetic energy storage), veja Fig. 10(a), que podem ser descritas como bobinas gigantes, matendo uma alta corrente, que podem ser usadas quando desejado.

O segundo tipo é chamado comumente de “flywheel” e consiste em um ímã permanente em formato cilíndrico, com grande massa, girando com alta velocidade sobre um supercondutor, veja Fig. 10(b). Esta bateria utiliza-se do efeito Meissner, que faz os supercondutores repelirem fortemente qualquer imã permanente.

Supercondutividade

As baterias supercondutoras são especialmente interessantes na estabilização de redes elétricas, em especial as SMES. Em março de 2000, por exemplo, foi encomendada a fabricação de um conjunto delas SMES para a estabilização da rede do estado de Winconsin – EUA. Um conjunto destas SMES é capaz de reservar mais de 3 milhões de watts para ser usado durante pequenos blecautes.

B. Trem magneticamente levitado (MAGLEV)

Como altas correntes elétricas podem ser mantidas nos supercondutores, altos campos magnéticos podem ser gerados, de acordo com as leis da eletricidade e magnetismo.

Uma das aplicações é a levitação magnética que pode ser utilizada em veículos de transporte, como trens, eliminando a fricção com os trilhos. Trens desse tipo podem ser feitos com magnetos convencionais, pois utilizam basicamente atração e repulsão magnéticas na levitação. Entretanto, os magnetos convencionais desperdiçam energia elétrica na forma de calor e precisam ser bem maiores que os magnetos supercondutores para fornecerem os campos magnéticos necessários à levitação.

Na década de 90, trens comerciais começaram a ser desenvolvidos principalmente no Japão, onde o desenvolvimento da tecnologia MA-GLEV ganhou apoio maciço do governo. Recentemente o último protótipo desenvolvido, MLX01 (veja Fig. 11), chegou a 552 Km/h em uma composição tripulada, de 5 vagões. Outros trens estão sendo desenvolvidos e devem entrar em operação nos próximos anos na Alemanha e nos Estados Unidos.

C. Ressonância magnética nuclear

Outra aplicação para os altos campos magnéticos obtidos dos supercondutores é a fabricação e utilização de aparelhos de ressonância magnética nuclear (RMN).

O princípio de funcionamento desses aparelhos é baseado na ressonância que os átomos de hidrogênio entram na aplicação de campo magnético forte. Os átomos de H presentes nas moléculas de água e de gordura absorvem a energia magnética e a emitem numa frequência, que é, detectada e analisada graficamente em um computador. A Fig. 12 mostra uma imagem por RMN. O diagnóstico através de imagens deste tipo tornou-se atualmente um procedimento médico indispensável devido, principalmente, ao desenvolvimento da capacidade de processamento dos computadores, necessária na análise da grande quantidade de dados que é gerada durante os exames.  

Supercondutividade

III Supercondutividade no MgB2

Desde a descoberta da supercondutividade a altas temperaturas em cerâmicas 15, anos atrás, os pesquisadores praticamente ignoraram compostos metálicos simples porque, em geral, superconduzem a temperaturas muito baixas.

Assim, foi um choque quando nos primeiros meses de 2001, a comunidade científica tomou conhecimento da descoberta de Akimitsu e seus colaboradores[10]. Um composto intermetálico com Tc = 39K acima de qualquer outra liga metálica, tinha sido descoberto.

Segundo Cav[11], o que torna a descoberta ainda mais fantástica é que ela foi feita praticamente ao acaso, por um grupo de cientistas que não estavam interessados em supercondutividade. Akimitsu e seu grupo estavam procurando um material semicondutor similar ao CaB6. Eles tentaram substituir o Ca por Mg, que está logo acima na tabela periódica.

Como liga inicial, eles sintetizam o MgB2, um composto simples com o processo de fabricação conhecido desde 1954[12, 13] e vendido por fornecedores de materiais inorgânicos por aproximadamente 3 dólares o grama[14]. Tamanho deve ter sido o susto quando eles descobriram o valor da temperatura crítica do composto.Segundo o artigo original de Akimitsu et al., as amostras de MgB2 foram preparadas na maneira usual, misturando-se Magnésio em pó (99.9% Mg) e Boro amorfo, também em pó, (99% B) na razão apropriada (Mg:B = 1:2). As amostras foram, então, prensadas e aquecidas a 973 K sob alta pressão de argônio (196 MPa), por 10 horas.

Exames da amostra resultante por difração de raio X revelaram a formação da estrutura hexagonal do MgB2, como mostra a Fig. 13. O estado supercondutor foi, então, demonstrado, medindo a resistividade e a magnetização da amostra na presença de campo magnético.

Na Fig. 14 podemos ver a susceptibilidade no MgB2. Devido ao efeito Meissner, a amostra se magnetiza na direção oposta ao campo magnético, e portanto a susceptibilidade, que é a razão da magnetização pelo campo magnético, é negativa. Quando o efeito Meissner não é perfeito, os valores da susceptibilidade ficam entre -1 e 0, como é o caso. Na Fig. 15 podemos ver a perda da resistividade a 39 K.

Supercondutividade

Supercondutividade

A. Fabricação de MgB2 em pó e dependência isotópica de Tc

Logo após a divulgação da descoberta de Akimitsu et al., vários grupos ao redor do mundo começaram seus estudos para reproduzir e confirmar a descoberta dos japoneses.

Entre eles, um grupo de cientistas do laboratório Ames, incluindo Paul Canfield, Doug Finnemore e Sergey Bud’ko[15, 16, 17], conseguiu sistematizar a produção de MgB2 em pó com alta pureza em um processo de duas horas.

O processo consistia em misturar Mg (99.9% puro) e B (99.5%) na razão estequiométrica correta em um tubo de Ta, que era então selado em uma ampola de quartzo e colocado em um forno a 950-C. Após duas horas, a ampola era retirada e o material resfriado à temperatura ambiente.

Como o ponto de fusão do Mg é de 922 K e o do B é de 2573 K, o processo de fabricação do MgB2 feito a 1222 K (950 -C) acontece com Mg na fase líquida e B ainda na fase sólida. Isso, aliado ao fato de que quando pedaços grandes de B são utilizados a amostra resultante não é homogênea, levou os cientistas a perceberem que a reação se dá pela difusão dos átomos de Mg pelas partículas de B.

Após a sistematização da produção, eles zeram substituições isotópicas. Trocando o isótopo 11B, que forma 80% do Boro presente na natureza, por 10B, eles descobriram que o Tc aumentava em 1.0 K, veja Fig. 16. Essa dependência isotópica de Tc verificada é consistente com a prevista na teoria BCS, ou seja, proporcional a M1/2. Assim, mesmo tendo um Tc incrivelmente grande, o MgB2 é um supercondutor convencional, com os fônons gerados pelos átomos de B mediando a interação entre elétrons na formação dos pares de Cooper.

Supercondutividade

B. Fabricação de fios

Dados o alto Tc do MgB2 e a abundância dos elementos Mg e B na crosta terrestre, (o magnésio é o oitavo elemento mais abundante na Terra), a questão imediata que fica é se o processo de fabricação de fios é simples e barato, e o principal, se os fios são capazes de transportar altas correntes elétricas.

Este, de fato, é o problema principal enfrentando na utilização das cerâmicas supercondutoras em aplicações do dia a dia. Em um trabalho recente, Canfield[15] e colaboradores descrevem um processo de fabricação de fios bem simples e barato, utilizando fibras de Boro e Magnésio fundido, veja Fig.17.

Como o ponto de fusão do Mg é de 922 K e o do B é de 2573 K (950-C) leva em conta a alta difusão do Mg pelas fibras de B. As fibras de B são seladas juntamente com Mg em pó, em um tubo de Ta, na razão estequiométrica correta, o tubo é, então, lacrado em uma ampola de quartzo e levado ao forno. Após aproximadamente duas horas de reação, a ampola é removida do forno e resfriada à temperatura ambiente.

A aparência deformada dos fios, logo após a retirada do tubo de Ta, pode ser observada na Fig. 18. As fibras flexíveis e retas de B mostram-se deformadas e quebradiças após a reação. Segundo Canfield, os fios eram 80% densos e mostraram resistividade de 9.6 mWcm à temperatura ambiente.

Isso quer dizer que, mesmo no estado normal, os fios de MgB2 são bons condutores de eletricidade, melhores até que o chumbo, cuja resistividade é 21mWcm. Os fios podiam ainda transportar correntes de até Jc = 60kA/cm2. O comprimento máximo alcançado foi 5cm, mas fios maiores poderiam ser construídos, considerando-se a proteção externa com revestimento.

Supercondutividade

C. Vantagens e aplicações em potencial

O entusiasmo com a redescoberta do MgB2 justifica-se por duas razões principais. Primeiro, porque a liga, como vimos anteriormente, superconduz seguindo a teoria BCS[4]. Assim, diferentemente das cerâmicas supercondutoras, a liga parece ser um supercondutor convencional, como a maioria dos metais, mas com uma temperatura surpreendentemente alta.

Segundo, porque, sendo uma liga metálica, é grande a expectativa de que ela se torne o material preferido na manufatura de os que são a base para as aplicações do dia-a-dia. Com Tc de 39K, é bem possível que não seja necessária a refrigeração com hélio líquido, o que reduz significativamente os custos das aplicações.

D. Conclusão

Os estudos iniciais do MgB2 indicam que o material tem grande chance de se tornar o supercondutor preferido para aplicações, substituindo as até agora preferidas ligas de Nióbio. Assim, magnetos de alto campo, usados em máquinas de ressonância magnética, trens MAGLEVs, etc; cabos de transmissão; SMES e várias outras aplicações poderão ter seu custo reduzido com o uso do MgB2.

Talvez em alguns anos um exame de ressonância magnética, por exemplo, saia pela metade do preço com o uso do MgB2 em vez das ligas de Nióbio.Além das aplicações imediatas, a descoberta deste novo supercondutor intermetálico, com Tc tão alto, reacendeu a esperança na procura de um supercondutor à temperatura ambiente. Se tomarmos a tendência mostrada na Fig. 19, este sonho não parece estar tão distante.

A descoberta da supercondutividade a 39 K no MgB2 é, então, mais uma esperança de que novos supercondutores intermetálicos com Tc recorde sejam descobertos.

Supercondutividade

Referencias [1] H. K. Onnes, Commun. Phys. Lab. Univ. Leiden, Nos. 119, 120,122 (1911). [2] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L.Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu, Phys. Rev. Lett. 58(9), 908, (1987). [3] Joe Eck. Superconductors.org. Disponível em: <http://superconductors.org>. Acesso em: 8 de agosto de 2001. [4] J. Bardeen, L. N.Cooper, J. R. Schrieffer, Phys. Rev. 108, 1175 (1957). [5] F. Ostermann, L. M. Ferreira, C. J. H. Cavalcanti, Rev. Bras.Ens. Fs. 20, 270 (1998). [6] J. G. Bednorz, K. A. Mller, Z. Phys. B 64, 189 (1986). [7] P. F. Dahl, Superconductivity: its historical roots and development from mercury to the ceramic oxides, New York: American Institute of Physics, 1992, 406 p. [8] Maglev Systems Development Department Home Page. Disponível em: <http://www.rtri.or.jp/rd/maglev/html/english/ maglev_frame_E.html>. Acesso em: 8 de agosto de 2001. [9] J. P. Hornak, The Basics of MRI. Disponvel em <http://www.cis.rit.edu/htbooks/mri>. Acesso em 8 de agosto de 2001). [10] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J.Akimitsu, Nature 410, 63 (2001). [11] R. J. Cava, Nature 410, 23 (2001). [12] M. E. Jones, R. E. Marsh, J. Am. Chem. Soc. 76, 1434(1954). [13] R. M. Swift, D. White, J. Am. Chem. Soc. 79, 3641(1957). [14] CERAC Catalog Item Detail. Disponvel em: <http://asp.cerac.com/ProductDetail.asp?Item_No=M-1006>. Acesso em 8 de agosto de 2001. [15] P. C. Canfield, D. K. Finnemore, S. L. Bud’ko, J. E.Ostenson, G. Lapertot, C. E. Cunningham, C. Petrovic, Phys. Rev. Lett. 86, 2423 (2001). [16] D. K. Finnemore, J. E. Ostenson, S. L. Bud’ko, G.Lapertot, P. C. Canfield, Phys. Rev. Lett. 86, 2440 (2001). [17] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E.Cunningham, N. Anderson, P. C. Canfield, Phys. Rev. Lett. 86, 1877 (2001). [18] P. Dai, B. C. Chakoumakos, G. F. Sun, K. W. Wong, Y. Xin, D.F. Lu, Physica C 243, 201 (1995).

Fonte: www.scielo.br

Conteúdo Relacionado

 

Veja também

Equações de Maxwell

Equações de Maxwell

PUBLICIDADE Quais são as Equações de Maxwell? As quatro Equações de Maxwell descrevem os campos …

Corrente Contínua

Corrente Contínua

PUBLICIDADE O que é corrente contínua? A corrente contínua (CC) é unidirecional, portanto o fluxo …

Espectro Eletromagnético

Espectro Eletromagnético

PUBLICIDADE Definição O espectro eletromagnético é uma faixa contínua de comprimentos de onda. Os tipos …

Deixe uma resposta

O seu endereço de email não será publicado. Campos obrigatórios são marcados com *

Time limit is exhausted. Please reload the CAPTCHA.

300-209 exam 70-461 exam hp0-s41 dumps 640-916 exam 200-125 dumps 200-105 dumps 100-105 dumps 210-260 dumps 300-101 dumps 300-206 dumps 400-201 dumps Professor Messer's CompTIA N10-006 exam Network+