Facebook do Portal São Francisco
Google+
+ circle
Home  Fermentação Alcoólica  Voltar

Fermentação Alcoólica

MECANISMO DA FERMENTAÇÃO ALCOÓLICA

O termo fermentação vem do latim "fervere", que significa ferver.

Foi Pasteur, há pouco mais de um século, quem demonstrou ser a fermentação alcoólica realizada por microorganismos na ausência de oxigênio. Atualmente, por fermentação alcoólica se entende um conjunto de reações bioquímicas provocadas por microorganismos chamados leveduras, que atacam fundamentalmente os açucares da uva (glicose e frutose), transformando-os principalmente em álcool etílico e gás carbônico. Na superfície da casca da uva, existe grande quantidade de deles. O bagaço da uva não é liso; sua epiderme é recoberta por uma matéria cerosa chamada previna, que retém os microorganismos. Na previna, junto às leveduras úteis se encontram diversos outros microorganismos, sendo alguns deles desfavoráveis do ponto de vista técnico, como é o caso da bactéria acética.

Atualmente a indústria enológica vai se direcionando casa vez mais para a utilização de fermento selecionado (leveduras selecionadas), no processo de vinificação.

As leveduras mais utilizadas no processo de fermentação alcóolica são espécies originarias do gênero Saccharomyces sendo uma das principais a Saccharomyces cerevisiae.

A fermentação alcóolica ocorre devido ao fato de que as células de levedo produzem a energia que lhes é necessária para sobreviver, através de dois fenômenos de degradação da matéria orgânica: a respiração que necessita do oxigênio do ar ou a fermentação que ocorre na ausência de oxigênio do ar.

A fermentação alcóolica corresponde a uma má utilização de energia. Assim, a levedura necessita transformar muito açúcar e álcool, para assegurar suas necessidades energéticas. Nessas condições a multiplicação da levedura é pequena; ao contrário, o rendimento da transformação do açúcar em álcool é grande, em relação ao peso da levedura. A composição exata do açúcar foi determinada por Gay-Lussac.

É ainda de sua autoria a equação que descreve a fermentação alcóolica:

C6h62O6 = 2C2H5OH + 2CO2

Glicose álcool etílico dióxido de carbono

Ou seja, em 180g de glicose, resulta em 92g de álcool etílico e 88g de CO2. Esta reação, apesar de representar a parte fundamental do processo não é, porém, completa, pois outras substâncias se formam além do álcool etílico e CO2.

A proporção de álcool contida em um vinho é medida em graus alcoólicos, segundo o princípio de Gay-Lussac. Assim, por exemplo, quando se diz que um vinho tem 11ºG.L. significa que este conta com 11% do seu volume em álcool, ou seja, que em 100 ml do vinho considerado, 11 ml são de álcool puro (anidro).

Fermentação Malolática

Muitos vinhos sofrem uma fermentação secundária após a primeira (alcoólica).

Essa fermentação é provocada por bactérias lácticas, ex.: Leuconostoc oinos, que transformam o ácido málico (dicarboxílico) em ácido láctico (monocarboxílico), de sabor mais aveludado e em CO2. Em varias regiões do mundo, por motivos de origem climática, freqüentemente são obtidos vinhos tintos com elevada acidez, que irão desta forma se beneficiar com essa segunda fermentação, que provoca uma redução na acidez (desacidificação biológica). Essa fermentação é normalmente desejável nos vinhos tintos; porém, nem sempre é para os brancos.

Fonte: winexperts.terra.com.br

Fermentação Alcoólica

A fermentação é um processo de transformação de uma substância em outra, produzida a partir de microorganismos, tais como fungos, bactérias, ou até o próprio corpo, chamados nestes casos de fermentos.

A fermentação é um processo de obtenção de energia utilizado por algumas bactérias e outros organismos. Ele ocorre com a quebra da glicose (ou outros substratos como o amido) em piruvato, que depois é transformado em algum outro produto, como o álcool etílico e lactato, definindo fermentação alcoólica e láctica (a fermentação também pode ser butírica, oxálica, acética, etc.). Este tipo de obtenção de energia não necessita do oxigênio como aceptor final de elétrons, por isso é chamado de respiração anaeróbica. Porém, ele é 12 vezes menos eficiente em termos de energia, gerando apenas 2 ATPs por molécula de glicose. De acordo com Pasteur, tanto a velocidade da fermentação quanto a quantidade total de glicose por ela consumida eram muitas vezes maiores em condições anaeróbicas do que sob condições aeróbicas.O chamado efeito Pasteur ocorre porque o rendimento em ATP da glicólise, sob condições anaeróbicas (2 ATP por molécula de glicose) é muito menor que a obtida na oxidação completa da glicose até o CO2 e H2O, sob condições aeróbicas ( 36 a 38 ATP por molécula de glicose). Portanto, para produzir a mesma quantidade de ATP, é necessário consumir perto de 18x mais glicose em condições anaeróbicas do que em condições aeróbicas.

Exemplo de fermentação é o processo de transformação dos açúcares das plantas em álcool, tal como ocorre no processo de fabricação da cerveja, massa de pão, entre outros.

Outro exemplo de fermentação é a que ocorre nos musculos, a quando da atividade fisica intensa e na ausência de oxigenio, com a formação de lactato (ácido láctico).

Em alguns casos a fermentação é usada para modificar um material cuja modificação seria difícil ou muito cara se métodos químicos convencionais fossem escolhidos. A fermentação é sempre iniciada por enzimas que atuam como catalisadores naturais que provocam uma mudança química sem serem afetados por isto.

Os produtos de fermentação foram usados desde a antiguidade Habitantes das cavernas descobriram que a carne envelhecida tem um sabor mais agradável que a carne fresca. Vinho, cerveja, e pão são tão velhos quanto a agricultura. Foram encontrados pães nas pirâmides egípcias construídas há milhares de anos; Queijo, que envolve a fermentação de leite ou creme é outra comida muito antiga, sua fabricação na China e no Japão é conhecida há milhares de anos. O valor medicinal de produtos fermentados é conhecido há muito tempo. Os chineses usavam coalho de feijão-soja mofado para curar infecções de pele há 3.000 anos atrás. Os índios da America Central tratavam feridas infetadas com fungos.

A química das fermentações é uma ciência nova que ainda está em suas fases mais iniciais. É a base de processos industriais que convertem matérias-primas como grãos, açúcares, e subprodutos industriais em muitos produtos sintéticos diferentes. Cepas cuidadosamente selecionadas de mofos, leveduras e bactérias, e são usadas.

As primeiras plantas industriais a utilizarem tecnologia de fermentação foram as fábricas de cerveja. No entanto, foi só no final do século XIX e início do século XX que essa tecnologia passou a ser gradativamente utilizada, tanto na indústria de bebidas e alimentos, como na indústria química.

A indústria química, no início do século XX, iniciou a produção de solventes orgânicos. Só no início da I Guerra Mundial as necessidades de acetona na produção de explosivos estimularam substancialmente a pesquisa no potencial da tecnologia de fermentação.

Em 1923 , Pfizer inaugurou a primeira fábrica para a produção de ácido cítrico por via fermentativa. O processo envolvia uma fermentação utilizando o fungo Aspergillus niger, pelo qual açúcar era transformado em ácido cítrico

Uma descoberta casual: um funcionário de um mercado encontrou um melão embolorado por uma linhagem de Penicillium que podia prosperar quando cultivado em tanques fundos com aeração, e que produzia duzentas vezes mais penicilina que o bolor de Fleming cultivado em meio sólido. Outros antibióticos apareceram rapidamente.

O progresso da fermentação prossegue a passadas largas. A cada ano novos produtos são incorporados à lista de produtos derivados da fermentação. Várias vitaminas são produzidas pelo emprego de etapas de fermentação em sua síntese (B-2 riboflavina, B-12 cianocobalamina e C ácido ascórbico).

Alguns dos bioprocessos mais interessantes são as desidrogenações e hidroxilações específicas do núcleo esteróide. Essas transformações são vias econômicas utilizadas na obtenção da cortisona antiartrítica e seus derivados.

A Penicilina industrial e muitos outros antibióticos se tornaram uma área muito importante da indústria farmacêutica.

O Ácido cítrico é uma das muitas substâncias químicas produzidas por microorganismos. É usado em limpadores de metal e como um preservativo e agente de sabor em alimentos. O Ácido cítrico é responsável pelo sabor azedo de frutas cítricas. Poderia ser obtido delas, mas necessitaria muitos milhares de frutos para produzir a quantia de ácido cítrico atualmente feita pela fermentação de melado com o mofo Aspergillus niger.

Terramicina, é adicionado a rações animais para acelerar o crescimento dos animais e os proteger de doenças.

Tipos de Fermentação

Fermentação Alcoólica
Fermentação Butírica
Fermentação Acética
Fermentação Lática

Fermentação Alcoólica

O processo de fermentação alcoólica caracteriza-se como uma via catabólica, na qual há degradação de moléculas de açúcar (glicose ou frutose), no interior da célula de microorganismos (levedura ou bactéria) até a formação de etanol e CO2 havendo liberação de energia química e térmica.

O piruvato (proveniente da glicólise) sofre descarboxilação em uma reação irreversível catalisada pela piruvato descarboxilase. É uma reação de descarboxilaxão simples e não envolve a oxidação do piruvato. A piruvato descarboxilase requer Mg2+ e tem uma coenzima firmemente ligada, a tiamina pirofosfato (TPP) que é um cofator essencial para a piruvato-descarboxilase. Esse cofator irá proporcionar estabilidade a essa reação de troca de carga negativa.

Através da álcool desidrogenase, o acetaldeído é reduzido a etanol, com o NADH, derivado da atividade da gliceraldeído-3-fosfato desidrogenase, fornecendo o poder redutor. Portanto, os produtos finais da fermentação alcoólica são:

Glicose + 2ADP + 2 Pi à 2 etanol + 2 CO2 + 2 ATP + 2 H2O

É importante ressaltar que como a quantidade de NADH é limitada e ele é necessário na sua forma oxidada (NAD+) na glicólise e, consequentemente, na continuação do processo de produção de energia, o NADH tem que ser oxidado. Essa é a importância da realização da fermentação.

O CO2 produzido na descarboxilação do piruvato pelas leveduras é o responsável pela carbonatação caraterística do champagne (vinho) e da cerveja, assim como pelo crescimento da massa do pão e do bolo.

O processo de fabricação da cerveja, cujos álcool etílico e CO2 (gás carbônico) são produzidos a partir do consumo de açucares presentes no malte, é obtido através da cevada germinada. Este é mesmo processo usado no preparo da massa do pão (ou bolo), onde os fermentos das leveduras ou fungos consomem o açúcar obtido do amido da massa do pão, liberando CO2 (gás carbônico), que aumenta o volume da massa.

A álcool desidrogenase está presente em muitos organismos que metabolizam o álcool, incluindo o homem. No fígado humano ela cataliza a oxidação do etanol, quer ele seja ingerido quer ele seja produzido por microorganismos intestinais, com a concomitante redução do NAD+ para NADH.

As leveduras que destacam-se como produtoras do etanol são as espécies do gênero Saccharomyces, Schizosaccharamyes, Pichia e outras.

Os critérios tecnológicos que fazem com que uma levedura seja utilizada comercialmente na fermentação alcoólica são o alto rendimento e elevada produtividade, ou seja, rápida conversão de açucar em álcool, com baixa produção de coomponentes secundários. A espécie mais importante de levedura alcóolica é a Saccharomyces cerevisiae, que possui um largo espectro de utilização, sendo empregada na produção de pães, bebidas alcoólicas, etanol, etc. Sua biomassa pode ser recuperada como subproduto de fermentação e transformada em levedura seca, que constitui em matéria-prima para a fabricação de ração animal ou suplemento vitamínico para o homem.

A bactéria Zymomonas mobilis, que inicialmente foi isolada em mostos fermentadores de cidra, sucos fermentadados de palmeiras, em cervejarias e engenhos de aguardente, apresentou habilidades promissoras de transformar açucares em etanol e gás carbônico, em condições comparáveis áquelas exibidas pelas leveduras.

Zymomonas mobilis apresentam alto rendimento, tolerância a altas concentrações de glicose, habilidade de crescer em total anaerobiose, características que potencializam seu emprego em escala industrial. No entanto, para isso, devem haver mais pesquisas aplicadas.

Leveduras selvagens são aquelas que são estranhas ao processo de fermentação alcóolica, podendo ser da mesma espécie ou não em relação à levedura de processo. Sua presença é resultado de contaminação. Causam queda no rendimento e na produtividade da fermentação,bem como na qualidade do produto final.

Os gêneros de leveduras selvagens mais frequentemente relatados são Cândida, Hansenula, Bretanomyces, Kloeckera, Pichia, Torula, entre outros.

Bactérias contaminantes da fermentação alcoólica provêm do solo que acompanha a matéria-prima, da água industrial, do ar e dos equipamentos de processo.

Os incovenientes são os mesmos citados para as leveduras. Os maiores problemas resultam da ocorrência de fermentações secundárias como lática, acética, butírica.

As medidas profçailáticas são baeadas no controle de qualidade.

Produção de etanol   

Após a água, o álcool é o solvente mais comum, além de representar a matéria-prima de maior uso no laboratório e na indústria química.  Na biossíntese do etanol é empregado linhagens selecionadas de Saccharomyces cerevisae, que realizam a fermentação alcoólica, a partir de um carboidrato fermentável. É muito importante que a cultura de levedura possua um crescimento vigoroso e uma elevada tolerância ao etanol, apresentando assim a fermentação um grande rendimento final. 

O etanol é inibidor em altas concentrações, e a tolerância das leveduras é um ponto crítico para uma produção elevada deste metabólito primário. A tolerância ao etanol varia consideravelmente de acordo com as linhagens de leveduras. De modo geral, o crescimento cessa quando a produção atinge 5% de etanol (v/v), e a taxa de produção é reduzida a zero, na concentração de 6 a 10% de etanol (v/v).   

A transformação bioquímica realizada pela S. cerevisae é a seguinte:       

  Glicose --- enzimas da levedura --- 2 etanol + 2 CO2  

O etanol pode ser produzido a partir de qualquer carboidrato fermentável pela levedura: sacarose, sucos de frutas, milho, melaço, beterrabas, batatas, malte, cevada, aveia, centeio, arroz sorgo etc, (necessário hidrolisar os carboidratos complexo em açúcares simples fermentáveis, pelo uso de enzimas da cevada ou fúngicas, ou ainda pelo tratamento térmico do material acidificado).

Material celulósico, como madeira e resíduos da fabricação da pasta de papel podem ser utilizados. Por causa da grande quantidade de resíduos de material celulósico disponível, a fermentação direta desses materiais quando hidrolisados por enzimas celulolíticas pode ser de grande importância econômica. 

Culturas mistas de Clostridium thermocellum e C. thermosaccharolyticum podem ser usadas. Hemiceluloses e celuloses são hidrolisadas em monossacarídeos (hexoses e pentoses) por essas bactérias e os monossacarídeos são fermentados diretamente a etanol

O etanol é usado para a fabricação de bebidas e como combustível. No Brasil, a maior parte da produção de etanol é para a indústria de combustíveis. Essa preferência é pelo fato de o etanol não produzir dióxido de enxofre quando é queimado, ao contrário da gasolina que polui a atmosfera.  

A produção de etanol é feita a partir da cana-de-açúcar e obedece aos seguintes procedimentos:  

1. Moagem da cana: A cana passa por um processador, nessa etapa obtém-se o caldo de cana, também conhecido como garapa que contém um alto teor de sacarose, cuja fórmula é: C12H22O11.  

2. Produção de melaço: O produto obtido no primeiro passo (garapa) é aquecido para se obter o melaço, que consiste numa solução de 40% (aproximadamente), em massa, de sacarose. O açúcar mascavo é produzido quando parte dessa sacarose se cristaliza.  

3. Fermentação do melaço: Neste momento, é acrescentado ao melaço fermentos biológicos, como a Saccharomyces, que é um tipo de levedura que faz com que a sacarose se transforme em etanol. A ação de enzimas é que realiza esse trabalho. Após esse processo, se obtém o mosto fermentado, que já contém até 12% de seu volume total em etanol.  

4. Destilação do mosto fermentado: Aqui o produto, no caso o mosto, vai passar pelo processo de destilação fracionada e vai dar origem a uma solução cuja composição será: 96% de etanol e 4% de água. Existe uma denominação que é dada em graus, é o chamado teor alcoólico de uma bebida. No caso do etanol é de 96° GL (Gay-Lussac).

5. Desnaturalização: é misturado com alguma impureza, como por exemplo a gasolina (2-5%), para evitar o consumo humano;

6. Co-produção: utilização das sobras para outros usos:

CO2 produção de bebidas como refrigerante;
Sobras sólidas –
alimentação animal e produto a ser consumido em caldeiras para geração de calor.

 Cachaça é produzida como o álcool, com a única diferença de que a coluna de destilação fracionada usada não precisa ser tão eficiente, podendo deixar passar mais água (em geral 60%, pois a pinga tem teor alcoólico por volta de 40º GL). Dizemos que a pinga é uma bebida alcoólica destilada.

Outros exemplos são:    

Vodca: a partir de cereais.  
Uísque:
a partir de cevada.  
Uísque bourbon
: a partir de milho.

Já o vinho é uma bebida não-destilada. O suco de uva sofre fermentação, após o que o líquido (que não possui odor desagradável) é filtrado e colocado em barris e garrafas. Pelo fato de não sofrer destilação, o sabor e o aroma de um vinho dependem muito do tipo de uva utilizada, pois as substâncias responsáveis pelo aroma e sabor da uva estarão presentes também no vinho, uma vez que não são separadas por destilação. Já o sabor da pinga não é tão sensível à variedade de cana usada.

Outros exemplos de bebidas fermentadas não-destiladas são:   

Cerveja: a partir da cevada;  
Champanhe:
a partir da uva.

Obs.1: As bebidas não-destiladas apresentam teor alcoólica inferior ao das destiladas. Isso ocorre porque, quando o teor alcoólico chega a cerca de 15ºGL, os microorganismos morrem e a fermentação pára. Na destilação, como o álcool é mais volátil que a água, o teor alcoólico aumenta.  

Obs.2: No processo de produção do champanhe, parte da fermentação ocorre dentro da garrafa, produzindo o gás carbônico, que é liberado quando abrimos. 

Fermentação Lática

Fermentação láctica é o processo metabólico no qual carboidratos e compostos relacionados são parcialmente oxidados, resultando em liberação de energia e compostos orgânicos, principalmente ácido láctico, sem qualquer aceptor de elétrons externo. É realizado por um grupo de microrganismos denominado de bactérias ácido-lácticas, as quais têm importante papel na produção/conservação de produtos alimentares, ou pelas fibras musculares em situações de intensa atividade física, nas quais não há suprimento de oxigênio suficiente para que ocorra a respiração celular, ocorrendo acúmulo de ácido láctico na região, o que provoca dores, cansaço e câimbras.

Pode ser classificada em dois tipos, de acordo com a quantidade de produtos orgânicos formados: homolática e heteroláctica.

Microrganismos fermentadores

O grupo das bactérias ácido-lácticas é composto por 12 gêneros de bactérias gram-positivas: Carnobacterium, Enterococcus, Lactococcus, Lactobacillus, Lactosphaera, Leuconostoc, Oenococcus, Pediococcus, Streptococcus, Tetragenococcus, Vagococcus e Weissella. Todos os membros desse grupo apresentam a mesma característica de produzir ácido láctico a partir de hexoses. Streptococcus thermophilus é o microrganismo mais importante em alimento. Algas e fungos (leveduras e ficomicetos) são também capazes de sintetizar ácido lático. Produção comparável à das bactérias homofermentativas é obtida pelo fungo Rhizopus oryzae em meio de glicose. Sua utilização é preferível à das bactérias homofermentativas, porque o tempo gasto na fermentação é menor e a separação do produto, mais simples.

Fases

A fermentação láctica, tal como a alcoólica, realiza-se em duas fases:

1º Fase Glicólise

A equação global final para a glicólise é:

Glicose + 2NAD+ + 2ADP + 2Pi ? 2 Piruvato + 2 NADH + 2H+ + 2ATP + 2H2O

2º Fase: Fermentação láctica

Após a glicólise, a redução do piruvato é catalisada pela enzima lactato-desidrogenase. O equilíbrio global dessa reação favorece fortemente a formação de lactato. Microrganismos fermentadores regeneram continuamente o NAD+ pela transferência dos elétrons do NADH para formar um produto final reduzido, como o são o lactato e o etanol.

Reação de síntese do ácido lático na fermentação

Rendimento

O rendimento em ATP da glicólise sob condições anaeróbicas (2 ATP por molécula de glicose), como é o caso da fermentação, é muito menor que o obtido na oxidação completa da glicose até CO2 e H2O sob condições aeróbicas (30 ou 32 ATP por molécula de glicose). Portanto, para produzir a mesma quantidade de ATP, é necessário consumir perto de 18 vezes mais glicose em condições anaeróbicas do que nas condições aeróbicas.

Equação Geral

O processo geral da glicólise anaeróbica pode ser representado como:

Glicose + 2ADP + 2 Pi ? 2 lactato + 2 ATP + 2 H2O + 2 H+

Com a redução de duas moléculas de piruvato a duas de lactato, são regeneradas duas moléculas de NAD+.

O processo global é equilibrado e pode continuar indefinidamente: uma molécula de glicose é convertida em duas de lactato, com a geração de duas moléculas de ATP e, ainda, NAD+ e NADH são continuamente interconvertidos sem nenhum ganho ou perda global na quantidade de cada um deles.

Tipos de fermentação

A classificação da fermentação láctica é feita com base nos produtos finais do metabolismo da glicose:

Fermentação homoláctica: processo no qual o ácido láctico é o único produto da fermentação da glicose. As bactérias homolácticas podem extrair duas vezes mais energia de uma quantidade definida de glicose do que as heterolácticas. O comportamento homofermentativo é observado quando a glicose é metabolizada, mas não necessariamente quando as pentoses o são, já que algumas bactérias homolácticas produzem ácidos acético e láctico quando utilizam pentoses. O caráter homofermentativo de algumas linhagens pode ser mudado pela alteração das condições de crescimento, tais como concentração de glicose, pH e limitação de nutrientes. Todos os membros dos gêneros Pediococcus, Streptococcus, Lactococcus e Vagococcus são homofermentadores, assim como alguns Lactobacillus, e são muito importantes para a formação de acidez em laticínios.

Fermentação heteroláctica: processo no qual ocorre produção da mesma quantidade de lactato, dióxido de carbono e etanol a partir de hexoses. As bactérias heterolácticas são mais importantes do que as homolácticas na produção de componentes de aroma e sabor, tais como o acetilaldeído e o diacetil. Os heterofermentadores são Leuconostoc, Oenococcus, Weissela, Carnobacterium, Lactosphaera e alguns Lactobacillus. O processo de formação de diacetil a partir de citrato na indústria de alimentos é fundamental para a formação de odor, p. exemplo na fabricação de manteiga.

Aplicação industrial da fermentação láctica

Alguns alimentos podem se deteriorar pelo crescimento e ação de bactérias ácido-lácticas. No entanto, a importância deste grupo de microrganismos consiste em sua grande utilização na indústria alimentar. Muitos alimentos devem sua produção e suas características às atividades fermentativas dos microrganismos em questão. Queijos maturados, conservas, chucrute e lingüiças fermentadas são alimentos que possuem uma vida de prateleira consideravelmente maior que a matéria-prima da qual eles foram feitos. Além de serem mais estáveis, todos os alimentos fermentados possuem aroma e sabor característicos que resultam direta ou indiretamente dos organismos fermentadores. Em alguns casos, o conteúdo de vitaminas dos alimentos cresce juntamente com o aumento da digestibilidade da sua matéria-prima. Nenhum outro grupo ou categoria de alimentos é tão importante ou tem sido tão relacionado ao bem estar nutricional em todo o mundo quanto os produtos fermentados.          

Fermentação acética   

Desde a Antigüidade a humanidade sabe fabricar  vinagre; basta deixar o vinho azedar. Nessa reação, o etanol reage com o O2 transformando-se em ácido acético. 

O vinagre é azedo, pois se trata da solução aquosa de um ácido. Assim, para evitar que um vinho se estrague, devemos impedir a entrada de oxigênio na garrafa, o que é feito deixando-a na posição horizontal. Se determinarmos os números de oxidação dos átomos presentes nas substâncias envolvidas na reação de fermentação acética, veremos que um dos carbonos e o oxigênio sofreram alterações.   

Podemos dizer que o O2 atuou como agente oxidante, pois causou a oxidação do álcool. Muitos outros agentes oxidantes seriam capazes de executar essa oxidação, como, por exemplo, o permanganato de potássio em meio ácido ou o dicromato de potássio em meio ácido. 

Introdução 

Consiste na oxidaçao parcial, aeróbica, do álcool etílico, com produção de ácido acético. Esse processo é utilizado na produção de vinagre comum e do ácido acético industrial. Desenvolve-se também na deterioração de bebidas de baixo teor alcoólico e na de certos alimentos. A fermentação acética é realizada por um conjunto de bactérias do gênero Acetobacter ou Gluconobacter, pertencentes a família Pseudomonaceae e produz ácido acético e CO2. 

A fermentação acética corresponde à transformação do álcool em ácido acético por determinadas bactérias, conferindo o gosto característico de vinagre. As bactérias acéticas constituem um dos grupos de microrganismos de maior interesse econômico, de um lado pela sua função na produção do vinagre e, de outro, pelas alterações que provocam nos alimentos e bebidas. 

A bactéria acética ideal é aquela que resiste à elevada concentração de álcool e de ácido acético, com pouca exigência nutritiva, elevada velocidade de transformação do álcool em ácido acético, bom rendimento de transformação, sem hiperoxidar o ácido acético formado, além de conferir boas características gustativas ao vinagre. Essas bactérias acéticas necessitam do oxigênio do ar para realizarem a acetificação. Por isso multiplicam-se mais na parte superior do vinho que está sendo transformado em vinagre, formando um véu conhecido como "mãe do vinagre". Esse véu pode ser mais ou menos espesso de acordo com o tipo de bactéria.

O ácido acético produzido por bactérias desse gênero é o composto principal do vinagre, condimento obtido a partir da fermentação alcoólica do mosto açucarado e subsequente "fermentação acética".  

Considerações gerais sobre o processo 

Microorganismos:    

As bactérias acéticas utilizadas neste processo são aeróbias e alguns gêneros possuem como importante característica a ausência de algumas enzimas do ciclo dos ácidos tricarboxílicos, tornando incompleta a oxidação de alguns compostos orgânicos (baixa oxidação).   

Por isso, são úteis não apenas para a bioconversão, produzindo ácido acético, mas, também, para outras, como ácido propiônico a partir do propanol, sorbose a partir de sorbitol, ácido glucônico a partir da glicose, além de outros.   

As bactérias do ácido acético, assim originalmente definidas, compreendem um grupo de microrganismos aeróbios, Gram -, bastonetes, que apresentam motilidade, realizam uma oxidação incompleta de alcoóis, resultando no acúmulo de ácidos orgânicos como produto final.   

Outra propriedade é a relativamente alta tolerância à condições ácidas, a maioria das linhagens são capazes de crescer a valores de pH menores que 5.   

Atualmente, o gênero Acetobacter, compreende as bactérias acéticas que apresentam flagelos peritrícos, com capacidade para oxidar ácido acético.   

 Um outro gênero presente no grupo das bactérias do ácido acético, denominado primeiramente Acetomonas e mais recentemente Gluconobacter, apresentam flagelos polares, e são incapazes de oxidar o ácido acético, devido a ausência do ciclo dos ácidos tricarboxílicos completo.   

Outra característica interessante de algumas espécies do grupo das bactérias acéticas, aérobias estritas, é a capacidade para sintetizar celulose. A celulose formada não difere significantemente da celulose dos vegetais. 

O A. xylinum forma sobre a superfície de um meio líquido, uma capa de celulose, o que pode ser uma forma do organismo assegurar a sua permanência na superfície do líquido, onde o O2 está mais disponível. 

Características gerais do gênero Acetobacter:   

As bactérias do gênero Acetobacter são bastonetes elipsoidais, retos ou ligeiramente curvos. Quando jovens são Gram - e as células velhas são Gram variáveis.

Apresentam a capacidade para oxidar a molécula do etanol e do ácido acético a CO2 e H2O (superoxidação). São comumente encontrados em frutas e vegetais e estão envolvidos na acidificação bacteriana de sucos de frutas e bebidas alcoólicas, cerveja, vinho, produção de vinagre e fermentação de sementes de cacau.   

Os Acetobacter são capazes de fermentar vários açúcares, formando o ácido acético, ou ainda, utilizam este ácido como fonte de carbono, produzindo CO2 e H2O. 

As espécies capazes de oxidar o ácido acético, estão subdivididos em dois grupos: organismos capazes de utilizar sais de amônio como única fonte de nitrogênio e um outro grupo sem esta capacidade.  

A espécie representativa do gênero Acetobacter é o A. aceti, que é capaz de utilizar sais de amônio como única fonte de nitrogênio, juntamente com outras espécies: A. mobile, A. suboxidans, etc.   

Características gerais do gênero Gluconobacter:   

As bactérias acéticas deste gênero são bastonetes elipsoidais Gram - ou Gram + fracos quando as células estão velhas. As células desse gênero apresentam-se em pares ou em cadeias. São aérobios estritos e oxidam a molécula do etanol a ácido acético.   

O nome Gluconobacter vem da característica do gênero de oxidar a glicose em ácido glucônico. A espécie representante do gênero Gluconobacter é o G. oxydans, encontrado em alimentos, vegetais, frutas, fermento de padaria, cerveja, vinho, cidra e vinagre.   

Fatores de crescimento: As espécies do gênero Acetobacter tem algumas exigências nutricionais. Exigem algumas vitaminas do complexo B tais como tiamina, ácido pantotênico e nicotínico. E algumas espécies demonstram a necessidade de ácido p-aminobenzóico. As necessidades vitamínicas podem ser supridas com o uso de água de maceração de milho, extrato de leveduras, lisado de leveduras, malte ou extrato de malte.

Algumas espécies necessitam que sejam colocados no meio, aminoácidos como fontes de nitrogênio: A. oxydans e A. rancens necessitam de valina, cistina, histidina, alanina e isoleucina; A. melanogenus não tem essas mesmas necessidades.

Mecanismo de fermentação

Bioquimicamente, os Acetobacter realizam processos catabólicos e anabólicos por aerobiose e anaerobiose. É de interesse industrial, o catabolismo oxidante aeróbio de álcoois e açúcares, realizado por microrganismos, usado na produção de ácido acético ou de vinagre.  

O mecanismo de produção do ácido acético ocorre em duas etapas:    

1º) É formado o acetaldeído por oxidação;  

2º) O acetaldeído é convertido a ácido acético.  (75% do acetaldeído é convertido a ácido acético e os 25% restantes a etanol)

Produção do Vinagre:  

Para a produção do vinagre, são utilizados membros do gênero Acetobacter. Os Gluconobacter, apesar de produzirem ácido acético, o fazem de forma pouco eficiente e não são usados na produção de vinagre. A bactéria Acetobacter aceti utiliza o etanol, produzindo ácido acético, por isso é de grande interesse tecnológico. Outras espécies como o A. suboxydans, A. melanogenus, A. xylinum e A. rancens comportam de modo semelhante. desde que sejam adicionados ao meio, inicialmente, em pequenas quantidades, glicose, frutose, glicerol ou manitol.

Fermentação Butírica

Fermentação butírica é a reação química realizada por bactérias anaeróbias, através da qual se forma o ácido butírico. Este process o foi descoberto por Louis Pasteur em 1861.Se produz, a partir da lactose ou do ácido láctico, áci do butírico e gás. É característica das bactérias do gênero Clostridium e se caracteriza pelo surgimento de odores pútridos e desagradáveis. 

A fermentação butírica é a conversão dos carboidratos em ácido butírico por ação de bactérias da espécie Clostridium butyricum na ausência de oxigênio.

Fermentação butírica:

É a transformação de matéria orgânica complexa, em ácido butírico.

O ácido butírico (produto final da fermentação butídrica) produz-se a partir da lactose ou do ácido láctico com a formação do ácido butírico e gás. É característica das bactérias do género Clostridium e caracteriza-se pelo surgimento de odores e sabores pútridos e desagradáveis. Ocorre quando a fermentação dos hidratos de carbono é feita na ausência de oxigénio

Microrganismos - Bactérias Produtoras de Ácido Butírico

São encontradas no solo, em plantas, no esterco e, por isso, são facilmente encontrados no leite. A silagem estocada em más condições é uma fonte importante de esporos. As principais espécies são Clostridium tyrobutyricum e Clostridium butyricum. Elas são anaeróbias, formadoras de esporos com uma temperatura ótima de crescimento de 37°C.

Esses microrganismos não crescem bem no leite que contém oxigênio, mas se desenvolvem no queijo onde condições anaeróbias prevalecem. As propriedades do queijo como substrato microbiano transformam-se durante os primeiros dias da fermentação láctica. No início, o açúcar (lactose) é o substrato principal, com o decorrer da fermentação o lactato transforma-se no principal elemento capaz de sustentar o crescimento microbiano. A lactose é fermentada a ácido láctico, o qual é neutralizado pelo cálcio e outros minerais, formando lactato de cálcio. Então, a fermentação butírica precoce ("estufamento precoce") é devido à transformação da lactose por C. butyricum, enquanto que a fermentação tardia ("estufamento tardio") é conseqüência da degradação do lactato causado por C. butyricum ou C. tyrobutyricum (que só fermenta lactato). Essas fermentações produzem grandes quantidades de dióxido de carbono, hidrogênio e ácido butírico. O queijo adquire uma textura rachada e um gosto rancificado e adocicado de ácido butírico.  

As formas esporuladas resistem a pasteurização e podem causar grandes danos na produção de queijos. A adição de nitrato de potássio no leite destinado a produção de queijo é um método eficaz de controle. Contudo, o uso desse conservante tem sido combatido em vários países pelo presumido risco de formação de carcinogênicos. Também, o sal de cozinha (cloreto de sódio) possui um importante efeito inibitório sobre as bactérias butíricas, mas é importante que o mesmo seja utilizado cedo, na formação do coágulo. Os esporos das bactérias butíricas podem ser eliminados por centrifugação (bactocentrifugação) e microfiltração.

Fermentação butírica: produto final - ácido butírico, álcool butírico e ácido B-hidroxibutírico: também realizam respiração aneróbica.

Fonte: www.geocities.com

Fermentação Alcóolica

Metabolismo Energético

Um dos principais problemas dos seres vivos é a obtenção de energia para as suas atividades. De acordo com a teoria heterotrófica, os primeiros seres vivos seriam procariontes heterotróficos vivendo num meio aquático, donde retirariam nutrientes, formados na atmosfera e acumulados nos lagos e oceanos primitivos.

Devido á sua grande simplicidade, estes seres utilizariam processos igualmente rudimentares de retirar energia dessas moléculas de que se alimentavam. Esse mecanismo seria, quase com certeza, semelhante à fermentação realizada ainda por muitos organismos atuais.

Há mais de 2 mil milhões de anos, deverão ter surgido os primeiros organismos autotróficos, procariontes ainda mas capazes de produzir o seu próprio alimento através da fotossíntese. Este processo revolucionário, além de permitir a sobrevivência dos autotróficos, também serviu os heterotróficos, que passaram a alimentar-se deles.

A fotossíntese levou á acumulação de oxigénio na atmosfera terrestre, permitindo a algumas estirpes de procariontes tirar partido do poder oxidante dessa molécula para retirar muito mais energia dos nutrientes, através da respiração.

Os organismos retiram energia das mais diversas moléculas orgânicas (açucares, aminoácidos, ácidos gordos, etc.) mas a glicose é a mais frequente, tanto na fermentação como na respiração.

A fermentação é um conjunto de reações químicas controladas enzimaticamente, em que uma molécula orgânica (geralmente a glicose) é degradada em compostos mais simples, libertando energia. Este processo tem grande importância económica, sendo utilizado no fabrico de bebidas alcoólicas e pão, entre outros alimentos.

Estudos realizados por Pasteur permitiram verificar que a fermentação alcoólica estava sempre associada ao crescimento de leveduras, mas que se estas fossem expostas a quantidades importantes de oxigénio produziriam (em vez de álcool e dióxido de carbono) água e dióxido de carbono. Destas observações, Pasteur concluiu que a fermentação é o mecanismo utilizado pelos seres vivos para produzir energia na ausência de oxigénio.

Já em 1897, o químico alemão Buchner demonstrou que a fermentação era apenas uma sequência de reações químicas, podendo ocorrer fora de células vivas. Foi este estudo que revelou as enzimas (enzima = na levedura) e permitiu a compreensão do metabolismo celular em toda a sua globalidade.

Em 1930 os bioquímicos alemães Embden e Meyerhof descobriram a totalidade das etapas deste processo, pelo que essa sequência também é conhecida por cadeia de Embden-Meyerhof.

Dependendo do tipo de microrganismo presente, a fermentação pode ser:

Fermentação alcoólica - produz como produtos finais etanol e dióxido de carbono, produtos utilizados pelo Homem na produção de vinho, cerveja e outras bebidas alcoólicas e do pão;

Fermentação acética - produz como produto final o ácido acético, que causa o azedar do vinho ou dos sumos de fruta e sua consequente transformação em vinagre;

Fermentação láctica - produz como produto final o ácido láctico, geralmente a partir da lactose do leite. O baixar do pH causado pela acumulação do ácido láctico causa a coagulação das proteínas do leite e a formação do coalho usado no fabrico de iogurtes e queijos.

Pode-se considerar as reações da fermentação divididas em duas partes principais: a glicólise e a redução do ácido pirúvico.

Fermentação

A glicólise é o conjunto de reações iniciais da degradação da glicose, semelhantes em todos os tipos de fermentação e na respiração aeróbia. Tem início com a ativação da glicose, que recebe dois grupos fosfato, fornecidos pelo ATP, que se transforma em ADP.

Por este processo de fosforilação a glicose transforma-se em frutose 1,6-difosfato (molécula com 6 carbonos e dois fosfatos) que será quebrada em duas moléculas de gliceraldeído 3-fosfato (molécula com 3 carbonos e um fosfato), pois é altamente instável.

A energia desta quebra permite a ligação de um outro grupo fosfato inorgânico a cada uma destas moléculas, que se tornam gliceraldeído 1,3-difosfato. Estes grupos fosfato, energéticos, são então transferidos para moléculas de ADP, transformando-as em ATP. O gliceraldeído transforma-se, por sua vez, em ácido pirúvico.

Sabe-se que a glicólise ocorre em praticamente todos os seres vivos, mesmo que complementada com outras reações, o que parece confirmar que deverá ter sido o primeiro fenómeno eficiente de produção de energia em células.

Glicólise

A segunda parte da fermentação consiste na redução do ácido pirúvico resultante da glicólise. Cada molécula de ácido pirúvico é reduzida pelo hidrogénio que é libertado pelo NADh2 produzido na glicólise, originando, conforme o tipo de organismo fermentativo, ácido láctico, ácido acético ou álcool etílico e dióxido de carbono.

Redução do ácido pirúvico

Assim, o rendimento energético líquido deste processo fermentativo é de apenas 2 moléculas de ATP por cada molécula de glicose degradada (recordemos que para ativar a glicose foram investidos 2 ATP e que no final se produzem 4 ATP). Este processo é, portanto, muito pouco eficiente, pois apenas 4% da energia contida na molécula de glicose é disponibilizada para o organismo.

A fermentação não utiliza oxigénio e decorre no citoplasma das células, sendo cada etapa catalisada com a ajuda de uma enzima diferente.

Rendimento energético da fermentação

A fermentação degrada a glicose em moléculas menores mas ainda ricas em energia. Um claro exemplo disso é o álcool etílico, um dos possíveis produtos da fermentação, que pode inclusivé ser usado como combustível.

A respiração aeróbia, pelo contrário, liberta a totalidade da energia contida na molécula de glicose, como se pode comprovar analisando os produtos finais deste processo (água e dióxido de carbono), que são exatamente os mesmos utilizados na sua síntese.

Deste modo, apesar da perda de energia sob a forma de calor, a célula ainda consegue sintetizar 38 moléculas de ATP, em vez de apenas 2. Esta enorme vantagem em rendimento energético permite um metabolismo muito mais acelerado em organismos aeróbios que o presente em seres fermentativos ou anaeróbios.

O conjunto das reações da respiração celular aeróbia é extremamente complexo, tendo sido uma das maiores conquistas da bioquímica moderna a sua compreensão.

Por esse motivo, consideram-se geralmente as seguintes etapas:

Respiração

Glicólise - decorre no citoplasma e consiste na degradação da glicose em ácido pirúvico. É designada a fase anaeróbia da respiração pois é exatamente igual ao processo com o mesmo nome que decorre na fermentação;

Glicólise

Oxidação do ácido pirúvico - decorre ainda no citoplasma e produz acetilcoenzima A. Inicia-se aqui a diferença entre a fermentação e a respiração aeróbia, pois o ácido pirúvico vai ser descarboxilado (liberta uma molécula de dióxido de carbono) e transforma-se em ácido acético.

Este é desidrogenado (liberta hidrogénio que reduz NAD a NADh2) e combina-se com a coenzima A, formando acetilcoenzima A. O grupo acetil da acetilcoenzima A será transferido para o interior da mitocôndria, onde decorrem as etapas seguintes do processo.

Oxidação do ácido pirúvico

Ciclo de Krebs - decorre na matriz da mitocôndria e consiste numa série de reações complexas de descarboxilações e desidrogenações. Recebe o nome do bioquímico inglês que esclareceu o seu mecanismo em 1938.

Inicia-se com a combinação do grupo acetil com o ácido oxalacético, originando ácido cítrico. Este isomeriza-se transformando-se em ácido isocítrico. A sua desidrogenação origina ácido oxalsuccínico e os átomos de hidrogénio reduzem o NADP a NADPh2.

Uma descarboxilação liberta dióxido de carbono e forma ácido cetoglutárico. Este é novamente descarboxilado e desidrogenizado, originando ácido succínico e GTP (guanosina trifosfato, equivalente ao ATP) e reduzindo NAD a NADh2.

A desidrogenação transforma o ácido succínico em fumárico, com redução do FAD a FADh2. Este ácido reage com a água e forma ácido málico, que desidrogenizado recupera o ácido oxalacético, reduzindo NAD a NADh2.

Note-se que, por cada molécula de glicose decorrem 2 ciclos de Krebs pois formam-se 2 moléculas de ácido pirúvico no fim da glicólise;

Ciclo de Krebs

Cadeia respiratória - decorre na membrana interna da mitocôndria e consiste na transferência de 12 átomos de hidrogénio, libertados durante a oxidação da glicose, para o oxigénio.

Esta transferência forma água e liberta energia. Em condições não celulares a libertação de energia seria explosiva mas este mecanismo gradual permite que esta seja utilizada. Cada conjunto completo de moléculas receptoras intermédias de hidrogénio (por vezes apenas o seu electrão, ficando o protão em solução) designa-se, então, cadeia respiratória. Além das moléculas de NAD e FAD, já referidas anteriormente, são fundamentais nesta cadeia os citocromos.

De cada vez que um electrão é transferido há libertação de energia mas apenas se forma ATP quando a energia é superior a 10000 calorias. Por vezes, a energia é suficiente para formar mais que uma molécula de ATP mas apenas uma é sintetizada.

O oxigénio, aceptador final de electrões, fica carregado negativamente e combina-se com os protões em solução, originando água.

Pode-se neste momento calcular o rendimento energético da respiração, sabendo que cada molécula de NADh2 (tal como a de NADPh2) que inicia a cadeia respiratória produz 3 moléculas de ATP e que cada molécula de FADh2 produz 2 moléculas de ATP:

Na verdade estas cerca de 38000 calorias libertadas durante a respiração celular não correspondem á totalidade da energia libertada pela combustão da glicose mas apenas à quantidade de energia que a célula consegue armazenar sob a forma de ATP (cerca de 55% do total).

A restante energia é perdida durante o processo sob a forma de calor, o que ainda o torna o mais eficiente conhecido (a maioria dos carros, por exemplo, tem uma eficiência de cerca de 25%).

No entanto, a libertação de energia não é a única função da respiração pois nas suas reações intermédias, especialmente no ciclo de Krebs, degradam-se macromoléculas em compostos menores, posteriormente utilizados na síntese de novas biomoléculas.

Rendimento energético da respiração

Inicialmente pensava-se que o ciclo de Krebs apenas explicava a degradação dos glícidos durante a respiração. Atualmente sabe-se que o ciclo também permite explicar a degradação de lípidos e prótidos, compostos usados igualmente na obtenção de energia pela célula.

No caso dos lípidos, estes são previamente degradados até produzirem acetilcoenzima A, enquanto os aminoácidos se incorporam diretamente no ciclo de Krebs, sob a forma de moléculas com 2, 3 4 ou 5 átomos de carbono.

Integração de outros nutrientes na respiração

A fotossíntese fornece alimento a todas as formas de vida pois os organismos heterotróficos se alimentam direta ou indiretamente das moléculas orgânicas produzidas pelos autotróficos.

Outro importante contributo da fotossíntese é a produção de oxigénio, utilizado na respiração pela maioria dos organismos atuais. Praticamente todo o oxigénio da atmosfera terrestre tem origem fotossintética e pensa-se que é totalmente renovado, pelo mesmo processo, a cada 2000 anos.

A descoberta deste fenómeno fundamental para a vida na Terra é, apesar de tudo, bastante recente, tendo sido mencionado pela primeira vez em 1772 pelo inglês Priestley. Este bioquímico apercebeu-se que a introdução de uma planta num ambiente irrespirável melhorava rapidamente a qualidade do ar.

Em 1779 o holandês Ingen-Housz notou que para que as plantas "recuperassem" o ar necessitavam de luz e que essa "recuperação" se devia a um enriquecimento do ar em oxigénio. Iniciou-se aqui a ideia que as plantas decompunham o dióxido de carbono, libertando oxigénio, embora não fosse claro o destino do carbono excedente.

O mesmo Ingen-Housz propôs em 1796 que as plantas o utilizavam para fabricar as suas próprias moléculas orgânicas, sendo o oxigénio um subproduto dessas reações. A partir deste momento, o mecanismo ficou baptizado fotossíntese (síntese em presença de luz de compostos orgânicos).

As complexas reações da fotossíntese ocorrem nos cloroplastos, organitos semi-autônomos presentes nos seres autotróficos, e podem ser resumidas da seguinte forma:

Fotossíntese

energia luminosa + clorofila ----> (clorofila)*

6 CO2 + 12 h2O + (clorofila)* ----> C6h62O6 + 6 O2 + 6 h2O

Esta forma de resumir a fotossíntese, embora correta, não revela a complexidade das reações intermédias e dá a ideia (errada) de que o dióxido de carbono reage com a água.

Por volta de 1930, o investigador Van Niel propôs a hipótese que o oxigénio libertado na fotossíntese proviesse da água e não do dióxido de carbono, como antes se pensava. Dez anos mais tarde experiências com isótopos pesados de oxigénio comprovaram esse fato.

Outro tipo de experiências revelou que algumas das reações da fotossíntese são fotoquímicas (realizam-se em presença de luz), enquanto outras são termoquímicas (realizam-se sem intervenção direta da luz). Assim, é regra dividir o processo em fase luminosa, que ocorre a nível dos grana do cloroplasto, e fase escura, cujas reações decorrem no estroma.

Resumo do processo

A luz é constituída por "partículas luminosas", altamente energéticas, designadas fotões. A cor da luz é determinada pela energia dos fotões que a compõem (zona azul do espectro mais energia e zona vermelha do espectro menos energia).

Quando o electrão de um átomo é atingido por um fotão, pode absorver essa energia e ser impelido para uma orbital mais elevada (mais afastada do núcleo do átomo), dizendo-se que o átomo/molécula está num estado excitado.

Fase luminosa

No caso das reações da fotossíntese, as principais moléculas envolvidas são as clorofilas. Quando moléculas de clorofila são atingidas por luz de cor azul e vermelha (fotões com determinada energia, portanto), alguns dos seus electrões passam a orbitais mais elevadas e a molécula fica excitada.

No entanto, a clorofila excitada é muito instável e ao fim de certo tempo os electrões regressam ás suas órbitas de origem - estado fundamental -, libertando a energia que absorveram do fotão, sob a forma de luz. Este fenómeno é conhecido pela fluorescência da clorofila. As clorofilas refletem a luz verde, sendo esse o motivo porque as plantas são verdes.

Na maioria das células vegetais existem dois tipos de clorofila, a e b, sendo a clorofila b mais oxidada.

Fotossistemas

As moléculas de clorofila, receptores de electrões, pigmentos acessórios e enzimas participantes na fotossíntese estão organizadas nas membranas do cloroplastos em unidades designadas fotossistemas.

Cada fotossistema contém entre 250 a 400 moléculas de pigmentos e consiste em dois componentes intimamente associados: um centro de reação (formado por um complexo proteína-pigmento) e um complexo antena.

Todas as moléculas de pigmentos do fotossistema são capazes de absorver fotões, mas apenas um par de moléculas de clorofila em cada fotossistema utiliza essa energia nas reações fotoquímicas. Este par, localizado ao centro do fotossistema forma o centro de reação, enquanto as restantes moléculas se designam pigmentos antena. Estes podem ser, além de clorofilas, carotenóides e ficobilinas (ficocianina azul e ficoeritrina vermelho).

Dentro dos fotossistemas, as moléculas de pigmentos estão ligadas a proteínas específicas e situadas em locais que permitem uma eficiente captação da energia luminosa. A energia absorvida por cada molécula é transferida á seguinte, até alcançar o centro de reação. Quando ambas as clorofilas do centro de reação absorvem energia, um dos seus electrões é excitado e transferido para a primeira molécula receptora, iniciando-se o fluxo de electrões necessário ás reações fotoquímicas.

Existem dois tipos de fotossistemas

fotossistema I - também designado PS I, contém no seu centro de reação uma forma de clorofila a designada P700, pois absorve luz de comprimento de onda de 700 nm. Localiza-se preferencialmente nas membranas intergrana, em contato direto com o estroma do cloroplasto;

fotossistema II - também designado PS II, contém no seu centro de reação uma forma de clorofila a designada P680 (clorofila b) pois absorve luz de comprimento de onda de 680 nm. Localiza-se nos tilacóides e procede á fotólise da água.

De modo geral, os fotossistemas funcionam simultaneamente mas o fotossistema I pode funcionar independentemente.

No interior da célula, a energia libertada pelo regresso do electrão á sua orbital original não é "perdida" sob a forma de luz mas sim captada por um conjunto de moléculas, sendo depois utilizada na síntese de moléculas de ATP e NADPh2, utilizadas nas reações da fase escura.

A síntese destas moléculas implica dois tipos de reações:

Fotofosforilação cíclica

Nesta reação apenas intervém a clorofila a P700 e o fotossistema I. Ao receber luz de certo comprimento de onda, as moléculas de clorofila a excitam-se e os seus electrões (em vez de passarem a orbitais mais elevadas) saem da molécula, deixando-a oxidada. Os electrões excitados são captados pela ferredoxina (uma proteína contendo ferro) e daí vão passando por uma série de outras moléculas (flavinas, citocromos e vitamina K) que formam uma cadeia transportadora de electrões.

A passagem pela cadeia transportadora permite aos electrões libertar gradualmente a energia absorvida do fotão, permitindo que seja utilizada na energia química do ATP (sintetizado a partir de ADP e fosfato inorgânico). Por fim, o electrão já perdeu toda a energia e regressa ao estado fundamental e á clorofila a, voltando esta ao estado reduzido (não excitado).

Este ciclo repete-se de cada vez que a clorofila é atingida por um fotão. Aparentemente este processo de produção de ATP é uma via alternativa, ocorrendo apenas quando a quantidade de NADP é reduzida. Acredita-se que tenha sido este o método exclusivo de produção de ATP dos procariontes primitivos e as bactérias fotossintéticas ainda hoje o fazem. Como neste caso não existe fotólise da água, não há produção de oxigénio nem de NADPH, apenas de ATP;

Fotofosforilação acíclica

Nesta reação já intervêm os dois tipos de clorofila a e, logo, ambos os fotossistemas. A molécula de clorofila P680 é excitada ao ser atingida por um fotão. Os seus electrões libertam-se e são captados por um receptor de electrões, a plastoquinona.

Dessa molécula, os electrões passam por outra cadeia transportadora de electrões, perdendo energia, que é utilizada na síntese de ATP a partir de ADP e fosfato inorgânico.

A última molécula dessa cadeia é uma clorofila P700 oxidada. Ao receber o electrão ficará, portanto, reduzida. No entanto, ao receber o estímulo de novo fotão, volta a perder o seu electrão excitado, que é passado à ferredoxina e dela para o NADP, que fica reduzido (NADP2-).

Assim, os electrões que saem da clorofila b não regressam a ela (daí a designação de acíclica). São, no entanto, repostos pela água, que funciona como ponto de partida deste fluxo de electrões.

Este fato verifica-se pois ocorre fotólise da água, em presença de luz e clorofila:

2 h2O ---------> O2 + 4 H+ + 4 e-

O oxigénio produzido pela fotólise da água é eliminado para a atmosfera e os electrões vão substituir os electrões perdidos pela clorofila P680 durante a fotofosforilação acíclica, permitindo que regresse á sua forma reduzida. Os protões H+ são captados pelo NADP2-, originando NADPh2.

Fotólise da água

Na fase escura da fotossíntese ocorrem uma série de reações com absorção e redução de dióxido de carbono, inversas da glicólise, com formação de compostos orgânicos (açúcares, aminoácidos, ácidos gordos, glicerol, etc.).

No decorrer desta fase há gasto de NADPh2 e ATP, formadas na fase luminosa, as quais se transformam em NADP e ADP e voltam ás reações da fase luminosa.

Foram as experiências de Calvin, Bassham e Benson, entre 1954 e 1960, que permitiram determinar as diferentes etapas desta fase da fotossíntese.

Fase escura

Por esse motivo, a série de reações que permitem a síntese de glicose a partir de dióxido de carbono, ATP e NADPh2 é conhecida por ciclo de Calvin-Benson ou ciclo das pentoses.

O ciclo das pentoses pode ser resumido da seguinte forma: uma molécula de dióxido de carbono é fixada num açúcar fosforilado, a ribulose 1,5-difosfato, originando um composto instável com 6 carbonos, que se decompõe imediatamente originando duas moléculas de ácido fosfoglicérico. A partir daqui decorrem as reações inversas da glicólise que originam glicose e regeneram a ribulose 1,5-difosfato para que o ciclo recomece.

Atendendo a que por cada volta do ciclo de Calvin uma molécula de dióxido de carbono (logo um átomo de carbono) é reduzida (fixada), são necessárias 6 voltas do ciclo para se formar uma molécula como a de glicose.

O produto primário do ciclo de Calvin é o gliceraldeído 3-fosfato, a molécula transportada do cloroplasto para o citoplasma da célula. Esta é exatamente a mesma molécula produzida pela quebra da frutose 1,6-difosfato na glicólise.

A enzima ribulose 1,5-difosfato carboxilase, vulgarmente designada Rubisco, a enzima catalisadora da reação inicial do ciclo de Calvin (fixação do dióxido de carbono na ribulose) é muito abundante nos cloroplastos, correspondendo a mais de 15% do seu conteúdo proteico total. É, por este motivo, considerada por muitos bioquímicos a proteína mais abundante do mundo.

Assim, os fenômenos da fotossíntese podem ser resumidos, considerando apenas os produtos iniciais e finais, da seguinte forma:

O destino dos produtos finais da fotossíntese é variado, dependendo do organismo e das suas necessidades imediatas. Podem ser utilizados na respiração celular, fornecendo energia aos processos vitais ou podem ser convertidos em moléculas orgânicas de vários tipos.

Embora a glicose seja a molécula representada nas equações reduzidas da fotossíntese, a quantidade de glicose livre produzida nas células fotossintéticas é muito baixa. A maioria do carbono fixado é convertido preferencialmente em sacarose, o glícido de transporte, ou em amido, o glícido de reserva, das plantas.

O gliceraldeído 3-fosfato que é transportado para o citoplasma da célula é utilizado para formar glicose 1-fosfato, percursor imediato da sacarose. Pelo contrário, o gliceraldeído 3-fosfato que permanece nos cloroplastos, passa a amido, armazenado sob a forma de grânulos no estroma. Durante a noite, a glicose do amido é exportada para o citoplasma.

Destino dos produtos da fotossíntese

A taxa fotossintética é influenciada por diversos fatores ambientais, nomeadamente: Fatores que influenciam a fotossíntese

Intensidade luminosa - se as outras condições se mantiverem constantes, verificou-se experimentalmente que o aumento da intensidade luminosa provoca um correspondente aumento na taxa fotossintética. No entanto, tal apenas se verifica até certo ponto, o chamado ponto de saturação luminosa;

Intensidade luminosa

Concentração de dióxido de carbono - em condições uniformes de luminosidade e temperatura, o aumento da quantidade de dióxido de carbono disponível provoca, até um certo limite, o aumento da taxa fotossintética;

Concentração de CO2

Temperatura - o aumento da temperatura causa um acentuado aumento da taxa fotossintética em presença de alta intensidade luminosa mas rapidamente esse aumento começa a desnaturar as enzimas causando uma quebra na taxa de fotossíntese e, eventualmente, a morte do organismo.

Fonte: curlygirl.no.sapo.pt

Fermentação Alcoólica

A levedura e outros miroorganismos fermentam a glicose em etanol e CO2. A glicose é convertida em piruvato pela glicólise e o piruvato é convertido em etanol e CO2 em um processo de dois passos.

Fermentação Alcoólica

No primeiro passo, o piruvato sofre a descarboxilação em uma reação irreversível catalisa pela piruvato descarboxilase. Esta reação é uma descarboxilação simples e não envolve a oxidação do piruvato. A piruvato descarboxilase requer Mg2+ e tem uma coenzima firmemente ligada, a tiamina pirofosfato.

No segundo passo, através da ação da álcool desidrogenase, o acetaldeído é reduzido a etanol, com a NADH, derivado da atividade da gliceraldeído-3-fosfato desidrogenase, fornecendo o poder redutor.

A equação geral da fermentação alcoólica são o etanol é:

Glicose + 2ADP + 2Pi ® 2 etanol + 2CO2 + 2ATP + 2h2O

A piruvato descarboxilase está caracteristicamente presente nas leveduras de cervejaria e padaria e em todos os outros os organismos que promovem a fermentação alcoólica, incluindo algumas plantas. O CO2 produzido na descarboxilação do piruvato pelas leveduras de cervejaria é o responsável pela carbonatação caraterística do champanhe.

A álcool desidrogenase está presente em muitos organismos que metabolizam o álcool, incluindo o homem. No fígado humano ela cataliza a oxidação do etanol, quer ele seja ingerido quer ele seja produzido por microrganismos intestinais, com a concomitante redução do NAD+ para NADH.

A reação da piruvato descarboxilase na fermentação alcoólica é dependente de tiamina pirofosfato(TPP), uma coenzima derivada da vitamina B1.

A ausência desta vitamina na dieta humana leva a uma condição conhecida com beribéri, caracterizada por acúmulo de fluídos corporais(inchaço), dores, paralisias e, em última instância, morte.

A tiamina pirofosfato desempenha um importante papel na clivagem de ligações adjacentes a um grupo carbonila (como ocorre na descarboxilação dos a -cetácidos) e nos rearranjos químicos envolvendo a transferência de um grupo a;deído ativado de um átomo de carbono para outro.

A parte funcional da tiamina pirosfosfato é o anel tiazol.o próton em C-2 do anel é relativamente ácido e a perda deste próton acídico produz um carbânion que é a espécie ativa nas reações depententes de TPP. Este carbânion facilmente adiciona-se a grupos carbonila e o anel tiazol é assim posicionado para agir como um "escoadouro de életrons", que facilita fortemente as reações , como esta, de descarboxilação catalizada pelo piruvato descarboxialse.

Fermentação Alcoólica

Fonte: www.virtual.epm

Sobre o Portal | Política de Privacidade | Fale Conosco | Anuncie | Indique o Portal